Standard

Operation and performance of the ATLAS Tile Calorimeter in Run 1. / The ATLAS collaboration; Bogdanchikov, A. G.; Казанин, Василий Федорович et al.

In: European Physical Journal C, Vol. 78, No. 12, 987, 30.11.2018.

Research output: Contribution to journalArticlepeer-review

Harvard

APA

Vancouver

The ATLAS collaboration, Bogdanchikov AG, Казанин ВФ, Максимов ДА, Подберёзко ПС, Резанова ОЛ et al. Operation and performance of the ATLAS Tile Calorimeter in Run 1. European Physical Journal C. 2018 Nov 30;78(12):987. doi: 10.1140/epjc/s10052-018-6374-z

Author

The ATLAS collaboration ; Bogdanchikov, A. G. ; Казанин, Василий Федорович et al. / Operation and performance of the ATLAS Tile Calorimeter in Run 1. In: European Physical Journal C. 2018 ; Vol. 78, No. 12.

BibTeX

@article{b5afcc8683064e278b915a4cd955c7ac,
title = "Operation and performance of the ATLAS Tile Calorimeter in Run 1",
abstract = "The Tile Calorimeter is the hadron calorimeter covering the central region of the ATLAS experiment at the Large Hadron Collider. Approximately 10,000 photomultipliers collect light from scintillating tiles acting as the active material sandwiched between slabs of steel absorber. This paper gives an overview of the calorimeter{\textquoteright}s performance during the years 2008–2012 using cosmic-ray muon events and proton–proton collision data at centre-of-mass energies of 7 and 8 TeV with a total integrated luminosity of nearly 30 fb- 1. The signal reconstruction methods, calibration systems as well as the detector operation status are presented. The energy and time calibration methods performed excellently, resulting in good stability of the calorimeter response under varying conditions during the LHC Run 1. Finally, the Tile Calorimeter response to isolated muons and hadrons as well as to jets from proton–proton collisions is presented. The results demonstrate excellent performance in accord with specifications mentioned in the Technical Design Report.",
keywords = "GAIN, PHOTOMULTIPLIERS",
author = "{The ATLAS collaboration} and M. Aaboud and G. Aad and B. Abbott and J. Abdallah and O. Abdinov and B. Abeloos and Abhayasinghe, {D. K.} and Abidi, {S. H.} and AbouZeid, {O. S.} and Abraham, {N. L.} and H. Abramowicz and H. Abreu and Y. Abulaiti and Acharya, {B. S.} and S. Adachi and L. Adamczyk and J. Adelman and M. Adersberger and A. Adiguzel and T. Adye and Affolder, {A. A.} and Y. Afik and C. Agheorghiesei and Aguilar-Saavedra, {J. A.} and F. Ahmadov and G. Aielli and S. Akatsuka and H. Akerstedt and {\AA}kesson, {T. P.A.} and E. Akilli and Akimov, {A. V.} and Alberghi, {G. L.} and J. Albert and P. Albicocco and {Alconada Verzini}, {M. J.} and S. Alderweireldt and M. Aleksa and Aleksandrov, {I. N.} and C. Alexa and Anisenkov, {A. V.} and Baldin, {E. M.} and Bobrovnikov, {V. S.} and Buzykaev, {A. R.} and Kharlamov, {A. G.} and T. Kharlamova and Maslennikov, {A. L.} and Peleganchuk, {S. V.} and Talyshev, {A. A.} and Tikhonov, {Yu A.} and V. Zhulanov and Bogdanchikov, {A. G.} and Казанин, {Василий Федорович} and Максимов, {Дмитрий Александрович} and Подберёзко, {Павел Сергеевич} and Резанова, {Ольга Леонардовна} and Сухарев, {Андрей Михайлович}",
note = "We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF and DNSRC, Denmark; IN2P3-CNRS, CEA-DRF/IRFU, France; SRNSFG, Georgia; BMBF, HGF, and MPG, Germany; GSRT, Greece; RGC, Hong Kong SAR, China; ISF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; NWO, Netherlands; RCN, Norway; MNiSW and NCN, Poland; FCT, Portugal; MNE/IFA, Romania; MES of Russia and NRC KI, Russian Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZS, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, United States of America. In addition, individual groups and members have received support from BCKDF, the Canada Council, CANARIE, CRC, Compute Canada, FQRNT, and the Ontario Innovation Trust, Canada; EPLANET, ERC, ERDF, FP7, Horizon 2020 and Marie Sklodowska-Curie Actions, European Union; Investissements d'Avenir Labex and Idex, ANR, Region Auvergne and Fondation Partager le Savoir, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes co-financed by EU-ESF and the Greek NSRF; BSF, GIF and Minerva, Israel; BRF, Norway; CERCA Programme Generalitat de Catalunya, Generalitat Valenciana, Spain; the Royal Society and Leverhulme Trust, United Kingdom. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN, the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA), the Tier- 2 facilities worldwide and large non- WLCG resource providers. Major contributors of computing resources are listed in Ref. [56].",
year = "2018",
month = nov,
day = "30",
doi = "10.1140/epjc/s10052-018-6374-z",
language = "English",
volume = "78",
journal = "European Physical Journal C",
issn = "1434-6044",
publisher = "Springer Nature",
number = "12",

}

RIS

TY - JOUR

T1 - Operation and performance of the ATLAS Tile Calorimeter in Run 1

AU - The ATLAS collaboration

AU - Aaboud, M.

AU - Aad, G.

AU - Abbott, B.

AU - Abdallah, J.

AU - Abdinov, O.

AU - Abeloos, B.

AU - Abhayasinghe, D. K.

AU - Abidi, S. H.

AU - AbouZeid, O. S.

AU - Abraham, N. L.

AU - Abramowicz, H.

AU - Abreu, H.

AU - Abulaiti, Y.

AU - Acharya, B. S.

AU - Adachi, S.

AU - Adamczyk, L.

AU - Adelman, J.

AU - Adersberger, M.

AU - Adiguzel, A.

AU - Adye, T.

AU - Affolder, A. A.

AU - Afik, Y.

AU - Agheorghiesei, C.

AU - Aguilar-Saavedra, J. A.

AU - Ahmadov, F.

AU - Aielli, G.

AU - Akatsuka, S.

AU - Akerstedt, H.

AU - Åkesson, T. P.A.

AU - Akilli, E.

AU - Akimov, A. V.

AU - Alberghi, G. L.

AU - Albert, J.

AU - Albicocco, P.

AU - Alconada Verzini, M. J.

AU - Alderweireldt, S.

AU - Aleksa, M.

AU - Aleksandrov, I. N.

AU - Alexa, C.

AU - Anisenkov, A. V.

AU - Baldin, E. M.

AU - Bobrovnikov, V. S.

AU - Buzykaev, A. R.

AU - Kharlamov, A. G.

AU - Kharlamova, T.

AU - Maslennikov, A. L.

AU - Peleganchuk, S. V.

AU - Talyshev, A. A.

AU - Tikhonov, Yu A.

AU - Zhulanov, V.

AU - Bogdanchikov, A. G.

AU - Казанин, Василий Федорович

AU - Максимов, Дмитрий Александрович

AU - Подберёзко, Павел Сергеевич

AU - Резанова, Ольга Леонардовна

AU - Сухарев, Андрей Михайлович

N1 - We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF and DNSRC, Denmark; IN2P3-CNRS, CEA-DRF/IRFU, France; SRNSFG, Georgia; BMBF, HGF, and MPG, Germany; GSRT, Greece; RGC, Hong Kong SAR, China; ISF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; NWO, Netherlands; RCN, Norway; MNiSW and NCN, Poland; FCT, Portugal; MNE/IFA, Romania; MES of Russia and NRC KI, Russian Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZS, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, United States of America. In addition, individual groups and members have received support from BCKDF, the Canada Council, CANARIE, CRC, Compute Canada, FQRNT, and the Ontario Innovation Trust, Canada; EPLANET, ERC, ERDF, FP7, Horizon 2020 and Marie Sklodowska-Curie Actions, European Union; Investissements d'Avenir Labex and Idex, ANR, Region Auvergne and Fondation Partager le Savoir, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes co-financed by EU-ESF and the Greek NSRF; BSF, GIF and Minerva, Israel; BRF, Norway; CERCA Programme Generalitat de Catalunya, Generalitat Valenciana, Spain; the Royal Society and Leverhulme Trust, United Kingdom. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN, the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA), the Tier- 2 facilities worldwide and large non- WLCG resource providers. Major contributors of computing resources are listed in Ref. [56].

PY - 2018/11/30

Y1 - 2018/11/30

N2 - The Tile Calorimeter is the hadron calorimeter covering the central region of the ATLAS experiment at the Large Hadron Collider. Approximately 10,000 photomultipliers collect light from scintillating tiles acting as the active material sandwiched between slabs of steel absorber. This paper gives an overview of the calorimeter’s performance during the years 2008–2012 using cosmic-ray muon events and proton–proton collision data at centre-of-mass energies of 7 and 8 TeV with a total integrated luminosity of nearly 30 fb- 1. The signal reconstruction methods, calibration systems as well as the detector operation status are presented. The energy and time calibration methods performed excellently, resulting in good stability of the calorimeter response under varying conditions during the LHC Run 1. Finally, the Tile Calorimeter response to isolated muons and hadrons as well as to jets from proton–proton collisions is presented. The results demonstrate excellent performance in accord with specifications mentioned in the Technical Design Report.

AB - The Tile Calorimeter is the hadron calorimeter covering the central region of the ATLAS experiment at the Large Hadron Collider. Approximately 10,000 photomultipliers collect light from scintillating tiles acting as the active material sandwiched between slabs of steel absorber. This paper gives an overview of the calorimeter’s performance during the years 2008–2012 using cosmic-ray muon events and proton–proton collision data at centre-of-mass energies of 7 and 8 TeV with a total integrated luminosity of nearly 30 fb- 1. The signal reconstruction methods, calibration systems as well as the detector operation status are presented. The energy and time calibration methods performed excellently, resulting in good stability of the calorimeter response under varying conditions during the LHC Run 1. Finally, the Tile Calorimeter response to isolated muons and hadrons as well as to jets from proton–proton collisions is presented. The results demonstrate excellent performance in accord with specifications mentioned in the Technical Design Report.

KW - GAIN

KW - PHOTOMULTIPLIERS

UR - http://www.scopus.com/inward/record.url?scp=85057881096&partnerID=8YFLogxK

U2 - 10.1140/epjc/s10052-018-6374-z

DO - 10.1140/epjc/s10052-018-6374-z

M3 - Article

C2 - 30872953

AN - SCOPUS:85057881096

VL - 78

JO - European Physical Journal C

JF - European Physical Journal C

SN - 1434-6044

IS - 12

M1 - 987

ER -

ID: 17754178