Standard

Measurement of the Soft-Drop Jet Mass in pp Collisions at √ s=13 TeV with the ATLAS detector. / The ATLAS collaboration.

In: Physical Review Letters, Vol. 121, No. 9, 092001, 28.08.2018.

Research output: Contribution to journalArticlepeer-review

Harvard

APA

Vancouver

The ATLAS collaboration. Measurement of the Soft-Drop Jet Mass in pp Collisions at √ s=13 TeV with the ATLAS detector. Physical Review Letters. 2018 Aug 28;121(9):092001. doi: 10.1103/PhysRevLett.121.092001

Author

The ATLAS collaboration. / Measurement of the Soft-Drop Jet Mass in pp Collisions at √ s=13 TeV with the ATLAS detector. In: Physical Review Letters. 2018 ; Vol. 121, No. 9.

BibTeX

@article{2cce489e6a494df0bd9cb9704b1d8eba,
title = "Measurement of the Soft-Drop Jet Mass in pp Collisions at √ s=13 TeV with the ATLAS detector",
abstract = "Jet substructure observables have significantly extended the search program for physics beyond the standard model at the Large Hadron Collider. The state-of-the-art tools have been motivated by theoretical calculations, but there has never been a direct comparison between data and calculations of jet substructure observables that are accurate beyond leading-logarithm approximation. Such observables are significant not only for probing the collinear regime of QCD that is largely unexplored at a hadron collider, but also for improving the understanding of jet substructure properties that are used in many studies at the Large Hadron Collider. This Letter documents a measurement of the first jet substructure quantity at a hadron collider to be calculated at next-to-next-to-leading-logarithm accuracy. The normalized, differential cross section is measured as a function of log10ρ2, where ρ is the ratio of the soft-drop mass to the ungroomed jet transverse momentum. This quantity is measured in dijet events from 32.9 fb?1 of √ s = 13 TeV protonproton collisions recorded by the ATLAS detector. The data are unfolded to correct for detector effects and compared to precise QCD calculations and leading-logarithm particle-level Monte Carlo simulations.",
keywords = "ALGORITHM",
author = "{The ATLAS collaboration} and M. Aaboud and G. Aad and B. Abbott and O. Abdinov and B. Abeloos and Abidi, {S. H.} and AbouZeid, {O. S.} and Abraham, {N. L.} and H. Abramowicz and H. Abreu and R. Abreu and Y. Abulaiti and Acharya, {B. S.} and S. Adachi and L. Adamczyk and J. Adelman and M. Adersberger and T. Adye and Affolder, {A. A.} and Y. Afik and C. Agheorghiesei and Aguilar-Saavedra, {J. A.} and Ahlen, {S. P.} and F. Ahmadov and G. Aielli and S. Akatsuka and H. Akerstedt and {\AA}kesson, {T. P.A.} and E. Akilli and Akimov, {A. V.} and Alberghi, {G. L.} and J. Albert and P. Albicocco and {Alconada Verzini}, {M. J.} and Alderweireldt, {S. C.} and M. Aleksa and Aleksandrov, {I. N.} and C. Alexa and G. Alexander and T. Alexopoulos and M. Alhroob and Anisenkov, {A. V.} and Baldin, {E. M.} and Bobrovnikov, {V. S.} and Buzykaev, {A. R.} and Kharlamov, {A. G.} and T. Kharlamova and Maslennikov, {A. L.} and Talyshev, {A. A.} and Tikhonov, {Yu A.}",
note = "Publisher Copyright: {\textcopyright} 2018 CERN, for the ATLAS Collaboration.",
year = "2018",
month = aug,
day = "28",
doi = "10.1103/PhysRevLett.121.092001",
language = "English",
volume = "121",
journal = "Physical Review Letters",
issn = "0031-9007",
publisher = "American Physical Society",
number = "9",

}

RIS

TY - JOUR

T1 - Measurement of the Soft-Drop Jet Mass in pp Collisions at √ s=13 TeV with the ATLAS detector

AU - The ATLAS collaboration

AU - Aaboud, M.

AU - Aad, G.

AU - Abbott, B.

AU - Abdinov, O.

AU - Abeloos, B.

AU - Abidi, S. H.

AU - AbouZeid, O. S.

AU - Abraham, N. L.

AU - Abramowicz, H.

AU - Abreu, H.

AU - Abreu, R.

AU - Abulaiti, Y.

AU - Acharya, B. S.

AU - Adachi, S.

AU - Adamczyk, L.

AU - Adelman, J.

AU - Adersberger, M.

AU - Adye, T.

AU - Affolder, A. A.

AU - Afik, Y.

AU - Agheorghiesei, C.

AU - Aguilar-Saavedra, J. A.

AU - Ahlen, S. P.

AU - Ahmadov, F.

AU - Aielli, G.

AU - Akatsuka, S.

AU - Akerstedt, H.

AU - Åkesson, T. P.A.

AU - Akilli, E.

AU - Akimov, A. V.

AU - Alberghi, G. L.

AU - Albert, J.

AU - Albicocco, P.

AU - Alconada Verzini, M. J.

AU - Alderweireldt, S. C.

AU - Aleksa, M.

AU - Aleksandrov, I. N.

AU - Alexa, C.

AU - Alexander, G.

AU - Alexopoulos, T.

AU - Alhroob, M.

AU - Anisenkov, A. V.

AU - Baldin, E. M.

AU - Bobrovnikov, V. S.

AU - Buzykaev, A. R.

AU - Kharlamov, A. G.

AU - Kharlamova, T.

AU - Maslennikov, A. L.

AU - Talyshev, A. A.

AU - Tikhonov, Yu A.

N1 - Publisher Copyright: © 2018 CERN, for the ATLAS Collaboration.

PY - 2018/8/28

Y1 - 2018/8/28

N2 - Jet substructure observables have significantly extended the search program for physics beyond the standard model at the Large Hadron Collider. The state-of-the-art tools have been motivated by theoretical calculations, but there has never been a direct comparison between data and calculations of jet substructure observables that are accurate beyond leading-logarithm approximation. Such observables are significant not only for probing the collinear regime of QCD that is largely unexplored at a hadron collider, but also for improving the understanding of jet substructure properties that are used in many studies at the Large Hadron Collider. This Letter documents a measurement of the first jet substructure quantity at a hadron collider to be calculated at next-to-next-to-leading-logarithm accuracy. The normalized, differential cross section is measured as a function of log10ρ2, where ρ is the ratio of the soft-drop mass to the ungroomed jet transverse momentum. This quantity is measured in dijet events from 32.9 fb?1 of √ s = 13 TeV protonproton collisions recorded by the ATLAS detector. The data are unfolded to correct for detector effects and compared to precise QCD calculations and leading-logarithm particle-level Monte Carlo simulations.

AB - Jet substructure observables have significantly extended the search program for physics beyond the standard model at the Large Hadron Collider. The state-of-the-art tools have been motivated by theoretical calculations, but there has never been a direct comparison between data and calculations of jet substructure observables that are accurate beyond leading-logarithm approximation. Such observables are significant not only for probing the collinear regime of QCD that is largely unexplored at a hadron collider, but also for improving the understanding of jet substructure properties that are used in many studies at the Large Hadron Collider. This Letter documents a measurement of the first jet substructure quantity at a hadron collider to be calculated at next-to-next-to-leading-logarithm accuracy. The normalized, differential cross section is measured as a function of log10ρ2, where ρ is the ratio of the soft-drop mass to the ungroomed jet transverse momentum. This quantity is measured in dijet events from 32.9 fb?1 of √ s = 13 TeV protonproton collisions recorded by the ATLAS detector. The data are unfolded to correct for detector effects and compared to precise QCD calculations and leading-logarithm particle-level Monte Carlo simulations.

KW - ALGORITHM

UR - http://www.scopus.com/inward/record.url?scp=85053052906&partnerID=8YFLogxK

U2 - 10.1103/PhysRevLett.121.092001

DO - 10.1103/PhysRevLett.121.092001

M3 - Article

C2 - 30230903

AN - SCOPUS:85053052906

VL - 121

JO - Physical Review Letters

JF - Physical Review Letters

SN - 0031-9007

IS - 9

M1 - 092001

ER -

ID: 16452632