Standard

Measurement of τ polarisation in Z/ γ→ ττ decays in proton–proton collisions at √s=8 TeV with the ATLAS detector. / The ATLAS collaboration.

In: European Physical Journal C, Vol. 78, No. 2, 163, 01.02.2018.

Research output: Contribution to journalArticlepeer-review

Harvard

APA

Vancouver

The ATLAS collaboration. Measurement of τ polarisation in Z/ γ→ ττ decays in proton–proton collisions at √s=8 TeV with the ATLAS detector. European Physical Journal C. 2018 Feb 1;78(2):163. doi: 10.1140/epjc/s10052-018-5619-1

Author

The ATLAS collaboration. / Measurement of τ polarisation in Z/ γ→ ττ decays in proton–proton collisions at √s=8 TeV with the ATLAS detector. In: European Physical Journal C. 2018 ; Vol. 78, No. 2.

BibTeX

@article{66335007cc05462b8a43b80117cf98e5,
title = "Measurement of τ polarisation in Z/ γ∗→ ττ decays in proton–proton collisions at √s=8 TeV with the ATLAS detector",
abstract = "This paper presents a measurement of the polarisation of τ leptons produced in Z/ γ∗→ ττ decays which is performed with a dataset of proton—proton collisions at s=8 TeV, corresponding to an integrated luminosity of 20.2 fb- 1 recorded with the ATLAS detector at the LHC in 2012. The Z/ γ∗→ ττ decays are reconstructed from a hadronically decaying τ lepton with a single charged particle in the final state, accompanied by a τ lepton that decays leptonically. The τ polarisation is inferred from the relative fraction of energy carried by charged and neutral hadrons in the hadronic τ decays. The polarisation is measured in a fiducial region that corresponds to the kinematic region accessible to this analysis. The τ polarisation extracted over the full phase space within the Z/ γ∗ mass range of 66 τ= - 0.14 ± 0.02 (stat) ± 0.04 (syst). It is in agreement with the Standard Model prediction of Pτ= - 0.1517 ± 0.0019 , which is obtained from the ALPGEN event generator interfaced with the PYTHIA 6 parton shower modelling and the TAUOLA τ decay library.",
author = "{The ATLAS collaboration} and M. Aaboud and G. Aad and B. Abbott and O. Abdinov and B. Abeloos and Abidi, {S. H.} and AbouZeid, {O. S.} and Abraham, {N. L.} and H. Abramowicz and H. Abreu and R. Abreu and Y. Abulaiti and Acharya, {B. S.} and S. Adachi and L. Adamczyk and J. Adelman and M. Adersberger and T. Adye and Affolder, {A. A.} and Y. Afik and T. Agatonovic-Jovin and C. Agheorghiesei and Aguilar-Saavedra, {J. A.} and Ahlen, {S. P.} and F. Ahmadov and G. Aielli and S. Akatsuka and H. Akerstedt and {\AA}kesson, {T. P.A.} and E. Akilli and Akimov, {A. V.} and Alberghi, {G. L.} and J. Albert and P. Albicocco and Anisenkov, {A. V.} and Baldin, {E. M.} and Bobrovnikov, {V. S.} and Buzykaev, {A. R.} and Kazanin, {V. F.} and Kharlamov, {A. G.} and T. Kharlamova and Korol, {A. A.} and Maslennikov, {A. L.} and Maximov, {D. A.} and Peleganchuk, {S. V.} and P. Podberezko and Rezanova, {O. L.} and Soukharev, {A. M.} and Talyshev, {A. A.} and Tikhonov, {Yu A.}",
note = "Funding Information: Acknowledgements We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIEN-CIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF and DNSRC, Denmark; IN2P3-CNRS, CEA-DRF/IRFU, France; SRNSF, Georgia; BMBF, HGF, and MPG, Germany; GSRT, Greece; RGC, Hong Kong SAR, China; ISF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; NWO, Netherlands; RCN, Norway; MNiSW and NCN, Poland; FCT, Portugal; MNE/IFA, Romania; MES of Russia and NRC KI, Russian Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZ{\v S}, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wal-lenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, United States of America. In addition, individual groups and members have received support from BCKDF, the Canada Council, CANARIE, CRC, Compute Canada, FQRNT, and the Ontario Innovation Trust, Canada; EPLANET, ERC, ERDF, FP7, Horizon 2020 and Marie Sk{\l}odowska-Curie Actions, European Union; Investissements d{\textquoteright}Avenir Labex and Idex, ANR, R{\'e}gion Auvergne and Fondation Partager le Savoir, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes co-financed by EU-ESF and the Greek NSRF; BSF, GIF and Minerva, Israel; BRF, Norway; CERCA Programme Generalitat de Catalunya, Generalitat Valen-ciana, Spain; the Royal Society and Leverhulme Trust, United Kingdom. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN, the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA), the Tier-2 facilities worldwide and large non-WLCG resource providers. Major contributors of computing resources are listed in Ref. [51]. Publisher Copyright: {\textcopyright} 2018, CERN for the benefit of the ATLAS collaboration.",
year = "2018",
month = feb,
day = "1",
doi = "10.1140/epjc/s10052-018-5619-1",
language = "English",
volume = "78",
journal = "European Physical Journal C",
issn = "1434-6044",
publisher = "Springer Nature",
number = "2",

}

RIS

TY - JOUR

T1 - Measurement of τ polarisation in Z/ γ∗→ ττ decays in proton–proton collisions at √s=8 TeV with the ATLAS detector

AU - The ATLAS collaboration

AU - Aaboud, M.

AU - Aad, G.

AU - Abbott, B.

AU - Abdinov, O.

AU - Abeloos, B.

AU - Abidi, S. H.

AU - AbouZeid, O. S.

AU - Abraham, N. L.

AU - Abramowicz, H.

AU - Abreu, H.

AU - Abreu, R.

AU - Abulaiti, Y.

AU - Acharya, B. S.

AU - Adachi, S.

AU - Adamczyk, L.

AU - Adelman, J.

AU - Adersberger, M.

AU - Adye, T.

AU - Affolder, A. A.

AU - Afik, Y.

AU - Agatonovic-Jovin, T.

AU - Agheorghiesei, C.

AU - Aguilar-Saavedra, J. A.

AU - Ahlen, S. P.

AU - Ahmadov, F.

AU - Aielli, G.

AU - Akatsuka, S.

AU - Akerstedt, H.

AU - Åkesson, T. P.A.

AU - Akilli, E.

AU - Akimov, A. V.

AU - Alberghi, G. L.

AU - Albert, J.

AU - Albicocco, P.

AU - Anisenkov, A. V.

AU - Baldin, E. M.

AU - Bobrovnikov, V. S.

AU - Buzykaev, A. R.

AU - Kazanin, V. F.

AU - Kharlamov, A. G.

AU - Kharlamova, T.

AU - Korol, A. A.

AU - Maslennikov, A. L.

AU - Maximov, D. A.

AU - Peleganchuk, S. V.

AU - Podberezko, P.

AU - Rezanova, O. L.

AU - Soukharev, A. M.

AU - Talyshev, A. A.

AU - Tikhonov, Yu A.

N1 - Funding Information: Acknowledgements We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIEN-CIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF and DNSRC, Denmark; IN2P3-CNRS, CEA-DRF/IRFU, France; SRNSF, Georgia; BMBF, HGF, and MPG, Germany; GSRT, Greece; RGC, Hong Kong SAR, China; ISF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; NWO, Netherlands; RCN, Norway; MNiSW and NCN, Poland; FCT, Portugal; MNE/IFA, Romania; MES of Russia and NRC KI, Russian Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZŠ, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wal-lenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, United States of America. In addition, individual groups and members have received support from BCKDF, the Canada Council, CANARIE, CRC, Compute Canada, FQRNT, and the Ontario Innovation Trust, Canada; EPLANET, ERC, ERDF, FP7, Horizon 2020 and Marie Skłodowska-Curie Actions, European Union; Investissements d’Avenir Labex and Idex, ANR, Région Auvergne and Fondation Partager le Savoir, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes co-financed by EU-ESF and the Greek NSRF; BSF, GIF and Minerva, Israel; BRF, Norway; CERCA Programme Generalitat de Catalunya, Generalitat Valen-ciana, Spain; the Royal Society and Leverhulme Trust, United Kingdom. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN, the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA), the Tier-2 facilities worldwide and large non-WLCG resource providers. Major contributors of computing resources are listed in Ref. [51]. Publisher Copyright: © 2018, CERN for the benefit of the ATLAS collaboration.

PY - 2018/2/1

Y1 - 2018/2/1

N2 - This paper presents a measurement of the polarisation of τ leptons produced in Z/ γ∗→ ττ decays which is performed with a dataset of proton—proton collisions at s=8 TeV, corresponding to an integrated luminosity of 20.2 fb- 1 recorded with the ATLAS detector at the LHC in 2012. The Z/ γ∗→ ττ decays are reconstructed from a hadronically decaying τ lepton with a single charged particle in the final state, accompanied by a τ lepton that decays leptonically. The τ polarisation is inferred from the relative fraction of energy carried by charged and neutral hadrons in the hadronic τ decays. The polarisation is measured in a fiducial region that corresponds to the kinematic region accessible to this analysis. The τ polarisation extracted over the full phase space within the Z/ γ∗ mass range of 66 τ= - 0.14 ± 0.02 (stat) ± 0.04 (syst). It is in agreement with the Standard Model prediction of Pτ= - 0.1517 ± 0.0019 , which is obtained from the ALPGEN event generator interfaced with the PYTHIA 6 parton shower modelling and the TAUOLA τ decay library.

AB - This paper presents a measurement of the polarisation of τ leptons produced in Z/ γ∗→ ττ decays which is performed with a dataset of proton—proton collisions at s=8 TeV, corresponding to an integrated luminosity of 20.2 fb- 1 recorded with the ATLAS detector at the LHC in 2012. The Z/ γ∗→ ττ decays are reconstructed from a hadronically decaying τ lepton with a single charged particle in the final state, accompanied by a τ lepton that decays leptonically. The τ polarisation is inferred from the relative fraction of energy carried by charged and neutral hadrons in the hadronic τ decays. The polarisation is measured in a fiducial region that corresponds to the kinematic region accessible to this analysis. The τ polarisation extracted over the full phase space within the Z/ γ∗ mass range of 66 τ= - 0.14 ± 0.02 (stat) ± 0.04 (syst). It is in agreement with the Standard Model prediction of Pτ= - 0.1517 ± 0.0019 , which is obtained from the ALPGEN event generator interfaced with the PYTHIA 6 parton shower modelling and the TAUOLA τ decay library.

UR - http://www.scopus.com/inward/record.url?scp=85042560791&partnerID=8YFLogxK

UR - https://www.mendeley.com/catalogue/60b9a1ac-014d-3a7d-8f28-9ed9f00bdea9/

U2 - 10.1140/epjc/s10052-018-5619-1

DO - 10.1140/epjc/s10052-018-5619-1

M3 - Article

C2 - 31265004

AN - SCOPUS:85042560791

VL - 78

JO - European Physical Journal C

JF - European Physical Journal C

SN - 1434-6044

IS - 2

M1 - 163

ER -

ID: 41272193