Standard

Virtual Knot Theory and Virtual Knot Cobordism. / Kauffman, Louis H.

Knots, Low-Dimensional Topology and Applications - Knots in Hellas, International Olympic Academy, 2016. ред. / Colin C. Adams; Cameron McA. Gordon; Vaughan F.R. Jones; Louis H. Kauffman; Sofia Lambropoulou; Kenneth C. Millett; Jozef H. Przytycki; Jozef H. Przytycki; Renzo Ricca; Radmila Sazdanovic. Springer New York LLC, 2019. стр. 67-114 (Springer Proceedings in Mathematics and Statistics; Том 284).

Результаты исследований: Публикации в книгах, отчётах, сборниках, трудах конференцийстатья в сборнике материалов конференциинаучнаяРецензирование

Harvard

Kauffman, LH 2019, Virtual Knot Theory and Virtual Knot Cobordism. в CC Adams, CM Gordon, VFR Jones, LH Kauffman, S Lambropoulou, KC Millett, JH Przytycki, JH Przytycki, R Ricca & R Sazdanovic (ред.), Knots, Low-Dimensional Topology and Applications - Knots in Hellas, International Olympic Academy, 2016. Springer Proceedings in Mathematics and Statistics, Том. 284, Springer New York LLC, стр. 67-114, International Olympic Academy, 2016, Ancient Olympia, Греция, 17.07.2016. https://doi.org/10.1007/978-3-030-16031-9_4

APA

Kauffman, L. H. (2019). Virtual Knot Theory and Virtual Knot Cobordism. в C. C. Adams, C. M. Gordon, V. F. R. Jones, L. H. Kauffman, S. Lambropoulou, K. C. Millett, J. H. Przytycki, J. H. Przytycki, R. Ricca, & R. Sazdanovic (Ред.), Knots, Low-Dimensional Topology and Applications - Knots in Hellas, International Olympic Academy, 2016 (стр. 67-114). (Springer Proceedings in Mathematics and Statistics; Том 284). Springer New York LLC. https://doi.org/10.1007/978-3-030-16031-9_4

Vancouver

Kauffman LH. Virtual Knot Theory and Virtual Knot Cobordism. в Adams CC, Gordon CM, Jones VFR, Kauffman LH, Lambropoulou S, Millett KC, Przytycki JH, Przytycki JH, Ricca R, Sazdanovic R, Редакторы, Knots, Low-Dimensional Topology and Applications - Knots in Hellas, International Olympic Academy, 2016. Springer New York LLC. 2019. стр. 67-114. (Springer Proceedings in Mathematics and Statistics). doi: 10.1007/978-3-030-16031-9_4

Author

Kauffman, Louis H. / Virtual Knot Theory and Virtual Knot Cobordism. Knots, Low-Dimensional Topology and Applications - Knots in Hellas, International Olympic Academy, 2016. Редактор / Colin C. Adams ; Cameron McA. Gordon ; Vaughan F.R. Jones ; Louis H. Kauffman ; Sofia Lambropoulou ; Kenneth C. Millett ; Jozef H. Przytycki ; Jozef H. Przytycki ; Renzo Ricca ; Radmila Sazdanovic. Springer New York LLC, 2019. стр. 67-114 (Springer Proceedings in Mathematics and Statistics).

BibTeX

@inproceedings{abb7e5bddd5545408a70e9de7630bac3,
title = "Virtual Knot Theory and Virtual Knot Cobordism",
abstract = "This paper is an introduction to virtual knot theory and virtual knot cobordism [37, 39]. Non-trivial examples of virtual slice knots are given and determinations of the four-ball genus of positive virtual knots are explained in relation to joint work with Dye and Kaestner [12]. We study the affine index polynomial [38], prove that it is a concordance invariant, show that it is invariant also under certain forms of labeled cobordism and study a number of examples in relation to these phenomena. In particular we show how a mod-2 version of the affine index polynomial is a concordance invariant of flat virtual knots and links, and explore a number of examples in this domain.",
keywords = "Affine index polynomial, Arrow polynomial, Bracket polynomial, Cobordism, Concordance, Graph, Invariant, Knot, Link, Parity bracket polynomial, Virtual knot",
author = "Kauffman, {Louis H.}",
note = "Publisher Copyright: {\textcopyright} Springer Nature Switzerland AG 2019.; International Olympic Academy, 2016 ; Conference date: 17-07-2016 Through 23-07-2016",
year = "2019",
month = jan,
day = "1",
doi = "10.1007/978-3-030-16031-9_4",
language = "English",
isbn = "9783030160302",
series = "Springer Proceedings in Mathematics and Statistics",
publisher = "Springer New York LLC",
pages = "67--114",
editor = "Adams, {Colin C.} and Gordon, {Cameron McA.} and Jones, {Vaughan F.R.} and Kauffman, {Louis H.} and Sofia Lambropoulou and Millett, {Kenneth C.} and Przytycki, {Jozef H.} and Przytycki, {Jozef H.} and Renzo Ricca and Radmila Sazdanovic",
booktitle = "Knots, Low-Dimensional Topology and Applications - Knots in Hellas, International Olympic Academy, 2016",
address = "United States",

}

RIS

TY - GEN

T1 - Virtual Knot Theory and Virtual Knot Cobordism

AU - Kauffman, Louis H.

N1 - Publisher Copyright: © Springer Nature Switzerland AG 2019.

PY - 2019/1/1

Y1 - 2019/1/1

N2 - This paper is an introduction to virtual knot theory and virtual knot cobordism [37, 39]. Non-trivial examples of virtual slice knots are given and determinations of the four-ball genus of positive virtual knots are explained in relation to joint work with Dye and Kaestner [12]. We study the affine index polynomial [38], prove that it is a concordance invariant, show that it is invariant also under certain forms of labeled cobordism and study a number of examples in relation to these phenomena. In particular we show how a mod-2 version of the affine index polynomial is a concordance invariant of flat virtual knots and links, and explore a number of examples in this domain.

AB - This paper is an introduction to virtual knot theory and virtual knot cobordism [37, 39]. Non-trivial examples of virtual slice knots are given and determinations of the four-ball genus of positive virtual knots are explained in relation to joint work with Dye and Kaestner [12]. We study the affine index polynomial [38], prove that it is a concordance invariant, show that it is invariant also under certain forms of labeled cobordism and study a number of examples in relation to these phenomena. In particular we show how a mod-2 version of the affine index polynomial is a concordance invariant of flat virtual knots and links, and explore a number of examples in this domain.

KW - Affine index polynomial

KW - Arrow polynomial

KW - Bracket polynomial

KW - Cobordism

KW - Concordance

KW - Graph

KW - Invariant

KW - Knot

KW - Link

KW - Parity bracket polynomial

KW - Virtual knot

UR - http://www.scopus.com/inward/record.url?scp=85069176625&partnerID=8YFLogxK

U2 - 10.1007/978-3-030-16031-9_4

DO - 10.1007/978-3-030-16031-9_4

M3 - Conference contribution

AN - SCOPUS:85069176625

SN - 9783030160302

T3 - Springer Proceedings in Mathematics and Statistics

SP - 67

EP - 114

BT - Knots, Low-Dimensional Topology and Applications - Knots in Hellas, International Olympic Academy, 2016

A2 - Adams, Colin C.

A2 - Gordon, Cameron McA.

A2 - Jones, Vaughan F.R.

A2 - Kauffman, Louis H.

A2 - Lambropoulou, Sofia

A2 - Millett, Kenneth C.

A2 - Przytycki, Jozef H.

A2 - Przytycki, Jozef H.

A2 - Ricca, Renzo

A2 - Sazdanovic, Radmila

PB - Springer New York LLC

T2 - International Olympic Academy, 2016

Y2 - 17 July 2016 through 23 July 2016

ER -

ID: 20886450