Standard

Virtual Knot Theory and Virtual Knot Cobordism. / Kauffman, Louis H.

Knots, Low-Dimensional Topology and Applications - Knots in Hellas, International Olympic Academy, 2016. ed. / Colin C. Adams; Cameron McA. Gordon; Vaughan F.R. Jones; Louis H. Kauffman; Sofia Lambropoulou; Kenneth C. Millett; Jozef H. Przytycki; Jozef H. Przytycki; Renzo Ricca; Radmila Sazdanovic. Springer New York LLC, 2019. p. 67-114 (Springer Proceedings in Mathematics and Statistics; Vol. 284).

Research output: Chapter in Book/Report/Conference proceedingConference contributionResearchpeer-review

Harvard

Kauffman, LH 2019, Virtual Knot Theory and Virtual Knot Cobordism. in CC Adams, CM Gordon, VFR Jones, LH Kauffman, S Lambropoulou, KC Millett, JH Przytycki, JH Przytycki, R Ricca & R Sazdanovic (eds), Knots, Low-Dimensional Topology and Applications - Knots in Hellas, International Olympic Academy, 2016. Springer Proceedings in Mathematics and Statistics, vol. 284, Springer New York LLC, pp. 67-114, International Olympic Academy, 2016, Ancient Olympia, Greece, 17.07.2016. https://doi.org/10.1007/978-3-030-16031-9_4

APA

Kauffman, L. H. (2019). Virtual Knot Theory and Virtual Knot Cobordism. In C. C. Adams, C. M. Gordon, V. F. R. Jones, L. H. Kauffman, S. Lambropoulou, K. C. Millett, J. H. Przytycki, J. H. Przytycki, R. Ricca, & R. Sazdanovic (Eds.), Knots, Low-Dimensional Topology and Applications - Knots in Hellas, International Olympic Academy, 2016 (pp. 67-114). (Springer Proceedings in Mathematics and Statistics; Vol. 284). Springer New York LLC. https://doi.org/10.1007/978-3-030-16031-9_4

Vancouver

Kauffman LH. Virtual Knot Theory and Virtual Knot Cobordism. In Adams CC, Gordon CM, Jones VFR, Kauffman LH, Lambropoulou S, Millett KC, Przytycki JH, Przytycki JH, Ricca R, Sazdanovic R, editors, Knots, Low-Dimensional Topology and Applications - Knots in Hellas, International Olympic Academy, 2016. Springer New York LLC. 2019. p. 67-114. (Springer Proceedings in Mathematics and Statistics). doi: 10.1007/978-3-030-16031-9_4

Author

Kauffman, Louis H. / Virtual Knot Theory and Virtual Knot Cobordism. Knots, Low-Dimensional Topology and Applications - Knots in Hellas, International Olympic Academy, 2016. editor / Colin C. Adams ; Cameron McA. Gordon ; Vaughan F.R. Jones ; Louis H. Kauffman ; Sofia Lambropoulou ; Kenneth C. Millett ; Jozef H. Przytycki ; Jozef H. Przytycki ; Renzo Ricca ; Radmila Sazdanovic. Springer New York LLC, 2019. pp. 67-114 (Springer Proceedings in Mathematics and Statistics).

BibTeX

@inproceedings{abb7e5bddd5545408a70e9de7630bac3,
title = "Virtual Knot Theory and Virtual Knot Cobordism",
abstract = "This paper is an introduction to virtual knot theory and virtual knot cobordism [37, 39]. Non-trivial examples of virtual slice knots are given and determinations of the four-ball genus of positive virtual knots are explained in relation to joint work with Dye and Kaestner [12]. We study the affine index polynomial [38], prove that it is a concordance invariant, show that it is invariant also under certain forms of labeled cobordism and study a number of examples in relation to these phenomena. In particular we show how a mod-2 version of the affine index polynomial is a concordance invariant of flat virtual knots and links, and explore a number of examples in this domain.",
keywords = "Affine index polynomial, Arrow polynomial, Bracket polynomial, Cobordism, Concordance, Graph, Invariant, Knot, Link, Parity bracket polynomial, Virtual knot",
author = "Kauffman, {Louis H.}",
note = "Publisher Copyright: {\textcopyright} Springer Nature Switzerland AG 2019.; International Olympic Academy, 2016 ; Conference date: 17-07-2016 Through 23-07-2016",
year = "2019",
month = jan,
day = "1",
doi = "10.1007/978-3-030-16031-9_4",
language = "English",
isbn = "9783030160302",
series = "Springer Proceedings in Mathematics and Statistics",
publisher = "Springer New York LLC",
pages = "67--114",
editor = "Adams, {Colin C.} and Gordon, {Cameron McA.} and Jones, {Vaughan F.R.} and Kauffman, {Louis H.} and Sofia Lambropoulou and Millett, {Kenneth C.} and Przytycki, {Jozef H.} and Przytycki, {Jozef H.} and Renzo Ricca and Radmila Sazdanovic",
booktitle = "Knots, Low-Dimensional Topology and Applications - Knots in Hellas, International Olympic Academy, 2016",
address = "United States",

}

RIS

TY - GEN

T1 - Virtual Knot Theory and Virtual Knot Cobordism

AU - Kauffman, Louis H.

N1 - Publisher Copyright: © Springer Nature Switzerland AG 2019.

PY - 2019/1/1

Y1 - 2019/1/1

N2 - This paper is an introduction to virtual knot theory and virtual knot cobordism [37, 39]. Non-trivial examples of virtual slice knots are given and determinations of the four-ball genus of positive virtual knots are explained in relation to joint work with Dye and Kaestner [12]. We study the affine index polynomial [38], prove that it is a concordance invariant, show that it is invariant also under certain forms of labeled cobordism and study a number of examples in relation to these phenomena. In particular we show how a mod-2 version of the affine index polynomial is a concordance invariant of flat virtual knots and links, and explore a number of examples in this domain.

AB - This paper is an introduction to virtual knot theory and virtual knot cobordism [37, 39]. Non-trivial examples of virtual slice knots are given and determinations of the four-ball genus of positive virtual knots are explained in relation to joint work with Dye and Kaestner [12]. We study the affine index polynomial [38], prove that it is a concordance invariant, show that it is invariant also under certain forms of labeled cobordism and study a number of examples in relation to these phenomena. In particular we show how a mod-2 version of the affine index polynomial is a concordance invariant of flat virtual knots and links, and explore a number of examples in this domain.

KW - Affine index polynomial

KW - Arrow polynomial

KW - Bracket polynomial

KW - Cobordism

KW - Concordance

KW - Graph

KW - Invariant

KW - Knot

KW - Link

KW - Parity bracket polynomial

KW - Virtual knot

UR - http://www.scopus.com/inward/record.url?scp=85069176625&partnerID=8YFLogxK

U2 - 10.1007/978-3-030-16031-9_4

DO - 10.1007/978-3-030-16031-9_4

M3 - Conference contribution

AN - SCOPUS:85069176625

SN - 9783030160302

T3 - Springer Proceedings in Mathematics and Statistics

SP - 67

EP - 114

BT - Knots, Low-Dimensional Topology and Applications - Knots in Hellas, International Olympic Academy, 2016

A2 - Adams, Colin C.

A2 - Gordon, Cameron McA.

A2 - Jones, Vaughan F.R.

A2 - Kauffman, Louis H.

A2 - Lambropoulou, Sofia

A2 - Millett, Kenneth C.

A2 - Przytycki, Jozef H.

A2 - Przytycki, Jozef H.

A2 - Ricca, Renzo

A2 - Sazdanovic, Radmila

PB - Springer New York LLC

T2 - International Olympic Academy, 2016

Y2 - 17 July 2016 through 23 July 2016

ER -

ID: 20886450