Standard

Universal enveloping algebra of a pair of compatible Lie brackets. / Gubarev, Vsevolod.

в: International Journal of Algebra and Computation, Том 32, № 7, 01.11.2022, стр. 1335-1344.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

Gubarev, V 2022, 'Universal enveloping algebra of a pair of compatible Lie brackets', International Journal of Algebra and Computation, Том. 32, № 7, стр. 1335-1344. https://doi.org/10.1142/S0218196722500588

APA

Gubarev, V. (2022). Universal enveloping algebra of a pair of compatible Lie brackets. International Journal of Algebra and Computation, 32(7), 1335-1344. https://doi.org/10.1142/S0218196722500588

Vancouver

Gubarev V. Universal enveloping algebra of a pair of compatible Lie brackets. International Journal of Algebra and Computation. 2022 нояб. 1;32(7):1335-1344. doi: 10.1142/S0218196722500588

Author

Gubarev, Vsevolod. / Universal enveloping algebra of a pair of compatible Lie brackets. в: International Journal of Algebra and Computation. 2022 ; Том 32, № 7. стр. 1335-1344.

BibTeX

@article{8bfd39130d2842f58c8b94889a264ade,
title = "Universal enveloping algebra of a pair of compatible Lie brackets",
abstract = "By applying the Poincar{\'e} - Birkhoff - Witt property and the Gr{\"o}bner - Shirshov bases technique, we find the linear basis of the associative universal enveloping algebra in the sense of Ginzburg and Kapranov of a pair of compatible Lie brackets. We state that the growth rate of this universal enveloping over n-dimensional compatible Lie algebra equals n + 1. ",
keywords = "compatible Lie brackets, growth rate, Gr{\"o}bner - Shirshov basis, Universal enveloping algebra over an operad",
author = "Vsevolod Gubarev",
note = "Publisher Copyright: {\textcopyright} 2022 World Scientific Publishing Company.",
year = "2022",
month = nov,
day = "1",
doi = "10.1142/S0218196722500588",
language = "English",
volume = "32",
pages = "1335--1344",
journal = "International Journal of Algebra and Computation",
issn = "0218-1967",
publisher = "World Scientific Publishing Co. Pte Ltd",
number = "7",

}

RIS

TY - JOUR

T1 - Universal enveloping algebra of a pair of compatible Lie brackets

AU - Gubarev, Vsevolod

N1 - Publisher Copyright: © 2022 World Scientific Publishing Company.

PY - 2022/11/1

Y1 - 2022/11/1

N2 - By applying the Poincaré - Birkhoff - Witt property and the Gröbner - Shirshov bases technique, we find the linear basis of the associative universal enveloping algebra in the sense of Ginzburg and Kapranov of a pair of compatible Lie brackets. We state that the growth rate of this universal enveloping over n-dimensional compatible Lie algebra equals n + 1.

AB - By applying the Poincaré - Birkhoff - Witt property and the Gröbner - Shirshov bases technique, we find the linear basis of the associative universal enveloping algebra in the sense of Ginzburg and Kapranov of a pair of compatible Lie brackets. We state that the growth rate of this universal enveloping over n-dimensional compatible Lie algebra equals n + 1.

KW - compatible Lie brackets

KW - growth rate

KW - Gröbner - Shirshov basis

KW - Universal enveloping algebra over an operad

UR - http://www.scopus.com/inward/record.url?scp=85136237535&partnerID=8YFLogxK

U2 - 10.1142/S0218196722500588

DO - 10.1142/S0218196722500588

M3 - Article

AN - SCOPUS:85136237535

VL - 32

SP - 1335

EP - 1344

JO - International Journal of Algebra and Computation

JF - International Journal of Algebra and Computation

SN - 0218-1967

IS - 7

ER -

ID: 36958150