Research output: Contribution to journal › Article › peer-review
Universal enveloping algebra of a pair of compatible Lie brackets. / Gubarev, Vsevolod.
In: International Journal of Algebra and Computation, Vol. 32, No. 7, 01.11.2022, p. 1335-1344.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - Universal enveloping algebra of a pair of compatible Lie brackets
AU - Gubarev, Vsevolod
N1 - Publisher Copyright: © 2022 World Scientific Publishing Company.
PY - 2022/11/1
Y1 - 2022/11/1
N2 - By applying the Poincaré - Birkhoff - Witt property and the Gröbner - Shirshov bases technique, we find the linear basis of the associative universal enveloping algebra in the sense of Ginzburg and Kapranov of a pair of compatible Lie brackets. We state that the growth rate of this universal enveloping over n-dimensional compatible Lie algebra equals n + 1.
AB - By applying the Poincaré - Birkhoff - Witt property and the Gröbner - Shirshov bases technique, we find the linear basis of the associative universal enveloping algebra in the sense of Ginzburg and Kapranov of a pair of compatible Lie brackets. We state that the growth rate of this universal enveloping over n-dimensional compatible Lie algebra equals n + 1.
KW - compatible Lie brackets
KW - growth rate
KW - Gröbner - Shirshov basis
KW - Universal enveloping algebra over an operad
UR - http://www.scopus.com/inward/record.url?scp=85136237535&partnerID=8YFLogxK
U2 - 10.1142/S0218196722500588
DO - 10.1142/S0218196722500588
M3 - Article
AN - SCOPUS:85136237535
VL - 32
SP - 1335
EP - 1344
JO - International Journal of Algebra and Computation
JF - International Journal of Algebra and Computation
SN - 0218-1967
IS - 7
ER -
ID: 36958150