Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
Uniformity of cc-balls on some class of 2-step Carnot groups. / Greshnov, Alexandr Valer yevich.
в: Сибирские электронные математические известия, Том 15, 01.01.2018, стр. 1182-1197.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - Uniformity of cc-balls on some class of 2-step Carnot groups
AU - Greshnov, Alexandr Valer yevich
PY - 2018/1/1
Y1 - 2018/1/1
N2 - For some class of 2-step Carnot groups H α1,...,αn 1 that includes Heizenberg groups we proved that Carnot-Carathéodory balls (cc-balls) of these groups are uniform domains. We studied the geometry of the set of points of H α1,...,αn 1 joined with identity element of H α1,...,αn 1 more than one Carnot-Carathéodory cc- shortest path.
AB - For some class of 2-step Carnot groups H α1,...,αn 1 that includes Heizenberg groups we proved that Carnot-Carathéodory balls (cc-balls) of these groups are uniform domains. We studied the geometry of the set of points of H α1,...,αn 1 joined with identity element of H α1,...,αn 1 more than one Carnot-Carathéodory cc- shortest path.
KW - Carnot-Carathéodory shortest path
KW - Cc-ball
KW - Extremal
KW - Heisenberg groups
KW - Uniform domain
KW - Carnot-Caratheodory shortest path
KW - cc-ball
KW - extremal
KW - uniform domain
KW - Heisenberg groups
KW - HEISENBERG-GROUP
KW - NTA-DOMAINS
KW - EXTENSION
KW - METRICS
UR - http://www.scopus.com/inward/record.url?scp=85061528749&partnerID=8YFLogxK
UR - https://www.elibrary.ru/item.asp?id=36998645
U2 - 10.17377/semi.2018.15.096
DO - 10.17377/semi.2018.15.096
M3 - Article
AN - SCOPUS:85061528749
VL - 15
SP - 1182
EP - 1197
JO - Сибирские электронные математические известия
JF - Сибирские электронные математические известия
SN - 1813-3304
ER -
ID: 18560875