Standard

Uniformity of cc-balls on some class of 2-step Carnot groups. / Greshnov, Alexandr Valer yevich.

In: Сибирские электронные математические известия, Vol. 15, 01.01.2018, p. 1182-1197.

Research output: Contribution to journalArticlepeer-review

Harvard

Greshnov, AVY 2018, 'Uniformity of cc-balls on some class of 2-step Carnot groups', Сибирские электронные математические известия, vol. 15, pp. 1182-1197. https://doi.org/10.17377/semi.2018.15.096

APA

Greshnov, A. V. Y. (2018). Uniformity of cc-balls on some class of 2-step Carnot groups. Сибирские электронные математические известия, 15, 1182-1197. https://doi.org/10.17377/semi.2018.15.096

Vancouver

Greshnov AVY. Uniformity of cc-balls on some class of 2-step Carnot groups. Сибирские электронные математические известия. 2018 Jan 1;15:1182-1197. doi: 10.17377/semi.2018.15.096

Author

Greshnov, Alexandr Valer yevich. / Uniformity of cc-balls on some class of 2-step Carnot groups. In: Сибирские электронные математические известия. 2018 ; Vol. 15. pp. 1182-1197.

BibTeX

@article{30501c1c2a63420cbc4b316f9fda272b,
title = "Uniformity of cc-balls on some class of 2-step Carnot groups",
abstract = " For some class of 2-step Carnot groups H α1,...,αn 1 that includes Heizenberg groups we proved that Carnot-Carath{\'e}odory balls (cc-balls) of these groups are uniform domains. We studied the geometry of the set of points of H α1,...,αn 1 joined with identity element of H α1,...,αn 1 more than one Carnot-Carath{\'e}odory cc- shortest path. ",
keywords = "Carnot-Carath{\'e}odory shortest path, Cc-ball, Extremal, Heisenberg groups, Uniform domain, Carnot-Caratheodory shortest path, cc-ball, extremal, uniform domain, Heisenberg groups, HEISENBERG-GROUP, NTA-DOMAINS, EXTENSION, METRICS",
author = "Greshnov, {Alexandr Valer yevich}",
year = "2018",
month = jan,
day = "1",
doi = "10.17377/semi.2018.15.096",
language = "English",
volume = "15",
pages = "1182--1197",
journal = "Сибирские электронные математические известия",
issn = "1813-3304",
publisher = "Sobolev Institute of Mathematics",

}

RIS

TY - JOUR

T1 - Uniformity of cc-balls on some class of 2-step Carnot groups

AU - Greshnov, Alexandr Valer yevich

PY - 2018/1/1

Y1 - 2018/1/1

N2 - For some class of 2-step Carnot groups H α1,...,αn 1 that includes Heizenberg groups we proved that Carnot-Carathéodory balls (cc-balls) of these groups are uniform domains. We studied the geometry of the set of points of H α1,...,αn 1 joined with identity element of H α1,...,αn 1 more than one Carnot-Carathéodory cc- shortest path.

AB - For some class of 2-step Carnot groups H α1,...,αn 1 that includes Heizenberg groups we proved that Carnot-Carathéodory balls (cc-balls) of these groups are uniform domains. We studied the geometry of the set of points of H α1,...,αn 1 joined with identity element of H α1,...,αn 1 more than one Carnot-Carathéodory cc- shortest path.

KW - Carnot-Carathéodory shortest path

KW - Cc-ball

KW - Extremal

KW - Heisenberg groups

KW - Uniform domain

KW - Carnot-Caratheodory shortest path

KW - cc-ball

KW - extremal

KW - uniform domain

KW - Heisenberg groups

KW - HEISENBERG-GROUP

KW - NTA-DOMAINS

KW - EXTENSION

KW - METRICS

UR - http://www.scopus.com/inward/record.url?scp=85061528749&partnerID=8YFLogxK

UR - https://www.elibrary.ru/item.asp?id=36998645

U2 - 10.17377/semi.2018.15.096

DO - 10.17377/semi.2018.15.096

M3 - Article

AN - SCOPUS:85061528749

VL - 15

SP - 1182

EP - 1197

JO - Сибирские электронные математические известия

JF - Сибирские электронные математические известия

SN - 1813-3304

ER -

ID: 18560875