Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
THE RAY TRANSFORM OF SYMMETRIC TENSOR FIELDS WITH INCOMPLETE PROJECTION DATA ON A CONVEX NON-SMOOTH DOMAIN. / Вайцель, Никита Александрович.
в: Сибирские электронные математические известия, Том 21, № 2, 2024, стр. 1011-1023.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - THE RAY TRANSFORM OF SYMMETRIC TENSOR FIELDS WITH INCOMPLETE PROJECTION DATA ON A CONVEX NON-SMOOTH DOMAIN
AU - Вайцель, Никита Александрович
PY - 2024
Y1 - 2024
N2 - We consider the ray transform IΓ that integrates symmetric rank m tensor fields on Rn supported in a bounded convex domain D ⊂ Rn over lines. The integrals are known for the family Γ of lines l such that endpoints of the segment l ∩ D belong to a given part γ = ∂D ∩ Rn + of the boundary, for some half-space Rn + ⊂ Rn. In this work, we assume that the domain D is convex with a non-smooth boundary. In this case, we prove that the kernel of the operator IΓ coincides with the space of γ-potential tensor fields, which is a generalization of the results obtained in [2]
AB - We consider the ray transform IΓ that integrates symmetric rank m tensor fields on Rn supported in a bounded convex domain D ⊂ Rn over lines. The integrals are known for the family Γ of lines l such that endpoints of the segment l ∩ D belong to a given part γ = ∂D ∩ Rn + of the boundary, for some half-space Rn + ⊂ Rn. In this work, we assume that the domain D is convex with a non-smooth boundary. In this case, we prove that the kernel of the operator IΓ coincides with the space of γ-potential tensor fields, which is a generalization of the results obtained in [2]
KW - ray transform
KW - tensor analysis
KW - tomography with incomplete data
KW - tomography with incomplete data
KW - tensor analysis
KW - ray transform
UR - https://www.scopus.com/record/display.uri?eid=2-s2.0-85212310076&origin=inward&txGid=4042b9c3c046995dc0071f23de709930
U2 - https://doi.org/10.33048/semi.2024.21.067
DO - https://doi.org/10.33048/semi.2024.21.067
M3 - Article
VL - 21
SP - 1011
EP - 1023
JO - Сибирские электронные математические известия
JF - Сибирские электронные математические известия
SN - 1813-3304
IS - 2
ER -
ID: 61413814