Standard

THE RAY TRANSFORM OF SYMMETRIC TENSOR FIELDS WITH INCOMPLETE PROJECTION DATA ON A CONVEX NON-SMOOTH DOMAIN. / Вайцель, Никита Александрович.

In: Сибирские электронные математические известия, Vol. 21, No. 2, 2024, p. 1011-1023.

Research output: Contribution to journalArticlepeer-review

Harvard

Вайцель, НА 2024, 'THE RAY TRANSFORM OF SYMMETRIC TENSOR FIELDS WITH INCOMPLETE PROJECTION DATA ON A CONVEX NON-SMOOTH DOMAIN', Сибирские электронные математические известия, vol. 21, no. 2, pp. 1011-1023. https://doi.org/10.33048/semi.2024.21.067

APA

Вайцель, Н. А. (2024). THE RAY TRANSFORM OF SYMMETRIC TENSOR FIELDS WITH INCOMPLETE PROJECTION DATA ON A CONVEX NON-SMOOTH DOMAIN. Сибирские электронные математические известия, 21(2), 1011-1023. https://doi.org/10.33048/semi.2024.21.067

Vancouver

Вайцель НА. THE RAY TRANSFORM OF SYMMETRIC TENSOR FIELDS WITH INCOMPLETE PROJECTION DATA ON A CONVEX NON-SMOOTH DOMAIN. Сибирские электронные математические известия. 2024;21(2):1011-1023. doi: https://doi.org/10.33048/semi.2024.21.067

Author

Вайцель, Никита Александрович. / THE RAY TRANSFORM OF SYMMETRIC TENSOR FIELDS WITH INCOMPLETE PROJECTION DATA ON A CONVEX NON-SMOOTH DOMAIN. In: Сибирские электронные математические известия. 2024 ; Vol. 21, No. 2. pp. 1011-1023.

BibTeX

@article{5496561284b048fa86e898bf9283e006,
title = "THE RAY TRANSFORM OF SYMMETRIC TENSOR FIELDS WITH INCOMPLETE PROJECTION DATA ON A CONVEX NON-SMOOTH DOMAIN",
abstract = "We consider the ray transform IΓ that integrates symmetric rank m tensor fields on Rn supported in a bounded convex domain D ⊂ Rn over lines. The integrals are known for the family Γ of lines l such that endpoints of the segment l ∩ D belong to a given part γ = ∂D ∩ Rn + of the boundary, for some half-space Rn + ⊂ Rn. In this work, we assume that the domain D is convex with a non-smooth boundary. In this case, we prove that the kernel of the operator IΓ coincides with the space of γ-potential tensor fields, which is a generalization of the results obtained in [2]",
keywords = "ray transform, tensor analysis, tomography with incomplete data, tomography with incomplete data, tensor analysis, ray transform",
author = "Вайцель, {Никита Александрович}",
year = "2024",
doi = "https://doi.org/10.33048/semi.2024.21.067",
language = "English",
volume = "21",
pages = "1011--1023",
journal = "Сибирские электронные математические известия",
issn = "1813-3304",
publisher = "Sobolev Institute of Mathematics",
number = "2",

}

RIS

TY - JOUR

T1 - THE RAY TRANSFORM OF SYMMETRIC TENSOR FIELDS WITH INCOMPLETE PROJECTION DATA ON A CONVEX NON-SMOOTH DOMAIN

AU - Вайцель, Никита Александрович

PY - 2024

Y1 - 2024

N2 - We consider the ray transform IΓ that integrates symmetric rank m tensor fields on Rn supported in a bounded convex domain D ⊂ Rn over lines. The integrals are known for the family Γ of lines l such that endpoints of the segment l ∩ D belong to a given part γ = ∂D ∩ Rn + of the boundary, for some half-space Rn + ⊂ Rn. In this work, we assume that the domain D is convex with a non-smooth boundary. In this case, we prove that the kernel of the operator IΓ coincides with the space of γ-potential tensor fields, which is a generalization of the results obtained in [2]

AB - We consider the ray transform IΓ that integrates symmetric rank m tensor fields on Rn supported in a bounded convex domain D ⊂ Rn over lines. The integrals are known for the family Γ of lines l such that endpoints of the segment l ∩ D belong to a given part γ = ∂D ∩ Rn + of the boundary, for some half-space Rn + ⊂ Rn. In this work, we assume that the domain D is convex with a non-smooth boundary. In this case, we prove that the kernel of the operator IΓ coincides with the space of γ-potential tensor fields, which is a generalization of the results obtained in [2]

KW - ray transform

KW - tensor analysis

KW - tomography with incomplete data

KW - tomography with incomplete data

KW - tensor analysis

KW - ray transform

UR - https://www.scopus.com/record/display.uri?eid=2-s2.0-85212310076&origin=inward&txGid=4042b9c3c046995dc0071f23de709930

U2 - https://doi.org/10.33048/semi.2024.21.067

DO - https://doi.org/10.33048/semi.2024.21.067

M3 - Article

VL - 21

SP - 1011

EP - 1023

JO - Сибирские электронные математические известия

JF - Сибирские электронные математические известия

SN - 1813-3304

IS - 2

ER -

ID: 61413814