Standard

The Rao–Reiter Criterion for the Amenability of Homogeneous Spaces. / Kopylov, Ya A.

в: Siberian Mathematical Journal, Том 59, № 6, 01.11.2018, стр. 1094-1099.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

Kopylov, YA 2018, 'The Rao–Reiter Criterion for the Amenability of Homogeneous Spaces', Siberian Mathematical Journal, Том. 59, № 6, стр. 1094-1099. https://doi.org/10.1134/S0037446618060125

APA

Vancouver

Kopylov YA. The Rao–Reiter Criterion for the Amenability of Homogeneous Spaces. Siberian Mathematical Journal. 2018 нояб. 1;59(6):1094-1099. doi: 10.1134/S0037446618060125

Author

Kopylov, Ya A. / The Rao–Reiter Criterion for the Amenability of Homogeneous Spaces. в: Siberian Mathematical Journal. 2018 ; Том 59, № 6. стр. 1094-1099.

BibTeX

@article{6924fb1438dc48999dea1f8938c18757,
title = "The Rao–Reiter Criterion for the Amenability of Homogeneous Spaces",
abstract = "We prove that a homogeneous space G/H, with G a locally compact group and H a closed subgroup of G, is amenable in the sense of Eymard–Greenleaf if and only if the quasiregular action πΦ of G on the unit sphere of the Orlicz space LΦ(G/H) for some N-function Φ ∈ Δ2 satisfies the Rao–Reiter condition (PΦ).",
keywords = "amenability, homogeneous space, locally compact group, N-function, Orlicz space, Δ-condition, Delta(2)-condition",
author = "Kopylov, {Ya A.}",
note = "Publisher Copyright: {\textcopyright} 2018, Pleiades Publishing, Ltd.",
year = "2018",
month = nov,
day = "1",
doi = "10.1134/S0037446618060125",
language = "English",
volume = "59",
pages = "1094--1099",
journal = "Siberian Mathematical Journal",
issn = "0037-4466",
publisher = "MAIK NAUKA/INTERPERIODICA/SPRINGER",
number = "6",

}

RIS

TY - JOUR

T1 - The Rao–Reiter Criterion for the Amenability of Homogeneous Spaces

AU - Kopylov, Ya A.

N1 - Publisher Copyright: © 2018, Pleiades Publishing, Ltd.

PY - 2018/11/1

Y1 - 2018/11/1

N2 - We prove that a homogeneous space G/H, with G a locally compact group and H a closed subgroup of G, is amenable in the sense of Eymard–Greenleaf if and only if the quasiregular action πΦ of G on the unit sphere of the Orlicz space LΦ(G/H) for some N-function Φ ∈ Δ2 satisfies the Rao–Reiter condition (PΦ).

AB - We prove that a homogeneous space G/H, with G a locally compact group and H a closed subgroup of G, is amenable in the sense of Eymard–Greenleaf if and only if the quasiregular action πΦ of G on the unit sphere of the Orlicz space LΦ(G/H) for some N-function Φ ∈ Δ2 satisfies the Rao–Reiter condition (PΦ).

KW - amenability

KW - homogeneous space

KW - locally compact group

KW - N-function

KW - Orlicz space

KW - Δ-condition

KW - Delta(2)-condition

UR - http://www.scopus.com/inward/record.url?scp=85059771141&partnerID=8YFLogxK

U2 - 10.1134/S0037446618060125

DO - 10.1134/S0037446618060125

M3 - Article

AN - SCOPUS:85059771141

VL - 59

SP - 1094

EP - 1099

JO - Siberian Mathematical Journal

JF - Siberian Mathematical Journal

SN - 0037-4466

IS - 6

ER -

ID: 18119297