Research output: Contribution to journal › Article › peer-review
The Rao–Reiter Criterion for the Amenability of Homogeneous Spaces. / Kopylov, Ya A.
In: Siberian Mathematical Journal, Vol. 59, No. 6, 01.11.2018, p. 1094-1099.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - The Rao–Reiter Criterion for the Amenability of Homogeneous Spaces
AU - Kopylov, Ya A.
N1 - Publisher Copyright: © 2018, Pleiades Publishing, Ltd.
PY - 2018/11/1
Y1 - 2018/11/1
N2 - We prove that a homogeneous space G/H, with G a locally compact group and H a closed subgroup of G, is amenable in the sense of Eymard–Greenleaf if and only if the quasiregular action πΦ of G on the unit sphere of the Orlicz space LΦ(G/H) for some N-function Φ ∈ Δ2 satisfies the Rao–Reiter condition (PΦ).
AB - We prove that a homogeneous space G/H, with G a locally compact group and H a closed subgroup of G, is amenable in the sense of Eymard–Greenleaf if and only if the quasiregular action πΦ of G on the unit sphere of the Orlicz space LΦ(G/H) for some N-function Φ ∈ Δ2 satisfies the Rao–Reiter condition (PΦ).
KW - amenability
KW - homogeneous space
KW - locally compact group
KW - N-function
KW - Orlicz space
KW - Δ-condition
KW - Delta(2)-condition
UR - http://www.scopus.com/inward/record.url?scp=85059771141&partnerID=8YFLogxK
U2 - 10.1134/S0037446618060125
DO - 10.1134/S0037446618060125
M3 - Article
AN - SCOPUS:85059771141
VL - 59
SP - 1094
EP - 1099
JO - Siberian Mathematical Journal
JF - Siberian Mathematical Journal
SN - 0037-4466
IS - 6
ER -
ID: 18119297