Standard

The Problem of Determining the Coefficient Multiplying a Power-Law Gradient Nonlinearity in a Semilinear Wave Equation. / Romanov, V. G.; Bugueva, T. V.

в: Journal of Applied and Industrial Mathematics, Том 17, № 2, 06.2023, стр. 370-384.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

APA

Vancouver

Romanov VG, Bugueva TV. The Problem of Determining the Coefficient Multiplying a Power-Law Gradient Nonlinearity in a Semilinear Wave Equation. Journal of Applied and Industrial Mathematics. 2023 июнь;17(2):370-384. doi: 10.1134/S1990478923020151

Author

Romanov, V. G. ; Bugueva, T. V. / The Problem of Determining the Coefficient Multiplying a Power-Law Gradient Nonlinearity in a Semilinear Wave Equation. в: Journal of Applied and Industrial Mathematics. 2023 ; Том 17, № 2. стр. 370-384.

BibTeX

@article{5607cd4f2637411e8b6513cc78880f2f,
title = "The Problem of Determining the Coefficient Multiplying a Power-Law Gradient Nonlinearity in a Semilinear Wave Equation",
abstract = "We consider a one-dimensional inverse problem of determining the coefficient multiplyinga power-law gradient nonlinearity in a semilinear wave equation. Theorems on the existence anduniqueness of the solution of the direct problem and local existence and stability of the solution ofthe inverse problem are proved.",
keywords = "direct problem, existence, inverse problem, power-law gradient nonlinearity, semilinear wave equation, stability, uniqueness",
author = "Romanov, {V. G.} and Bugueva, {T. V.}",
note = "This work was carried out within the framework of the state task for Sobolev Institute of Mathematics of the Siberian Branch of the Russian Academy of Sciences, project no. FWNF-2022-0009. Публикация для корректировки.",
year = "2023",
month = jun,
doi = "10.1134/S1990478923020151",
language = "English",
volume = "17",
pages = "370--384",
journal = "Journal of Applied and Industrial Mathematics",
issn = "1990-4789",
publisher = "Maik Nauka-Interperiodica Publishing",
number = "2",

}

RIS

TY - JOUR

T1 - The Problem of Determining the Coefficient Multiplying a Power-Law Gradient Nonlinearity in a Semilinear Wave Equation

AU - Romanov, V. G.

AU - Bugueva, T. V.

N1 - This work was carried out within the framework of the state task for Sobolev Institute of Mathematics of the Siberian Branch of the Russian Academy of Sciences, project no. FWNF-2022-0009. Публикация для корректировки.

PY - 2023/6

Y1 - 2023/6

N2 - We consider a one-dimensional inverse problem of determining the coefficient multiplyinga power-law gradient nonlinearity in a semilinear wave equation. Theorems on the existence anduniqueness of the solution of the direct problem and local existence and stability of the solution ofthe inverse problem are proved.

AB - We consider a one-dimensional inverse problem of determining the coefficient multiplyinga power-law gradient nonlinearity in a semilinear wave equation. Theorems on the existence anduniqueness of the solution of the direct problem and local existence and stability of the solution ofthe inverse problem are proved.

KW - direct problem

KW - existence

KW - inverse problem

KW - power-law gradient nonlinearity

KW - semilinear wave equation

KW - stability

KW - uniqueness

UR - https://www.scopus.com/record/display.uri?eid=2-s2.0-85166630420&origin=inward&txGid=92920cb8fd1d0e2af1bc3c789b835be1

UR - https://www.mendeley.com/catalogue/48465bb9-837b-34fd-87a3-d57c9dcba6b2/

U2 - 10.1134/S1990478923020151

DO - 10.1134/S1990478923020151

M3 - Article

VL - 17

SP - 370

EP - 384

JO - Journal of Applied and Industrial Mathematics

JF - Journal of Applied and Industrial Mathematics

SN - 1990-4789

IS - 2

ER -

ID: 59255680