Research output: Contribution to journal › Article › peer-review
The Problem of Determining the Coefficient Multiplying a Power-Law Gradient Nonlinearity in a Semilinear Wave Equation. / Romanov, V. G.; Bugueva, T. V.
In: Journal of Applied and Industrial Mathematics, Vol. 17, No. 2, 06.2023, p. 370-384.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - The Problem of Determining the Coefficient Multiplying a Power-Law Gradient Nonlinearity in a Semilinear Wave Equation
AU - Romanov, V. G.
AU - Bugueva, T. V.
N1 - This work was carried out within the framework of the state task for Sobolev Institute of Mathematics of the Siberian Branch of the Russian Academy of Sciences, project no. FWNF-2022-0009. Публикация для корректировки.
PY - 2023/6
Y1 - 2023/6
N2 - We consider a one-dimensional inverse problem of determining the coefficient multiplyinga power-law gradient nonlinearity in a semilinear wave equation. Theorems on the existence anduniqueness of the solution of the direct problem and local existence and stability of the solution ofthe inverse problem are proved.
AB - We consider a one-dimensional inverse problem of determining the coefficient multiplyinga power-law gradient nonlinearity in a semilinear wave equation. Theorems on the existence anduniqueness of the solution of the direct problem and local existence and stability of the solution ofthe inverse problem are proved.
KW - direct problem
KW - existence
KW - inverse problem
KW - power-law gradient nonlinearity
KW - semilinear wave equation
KW - stability
KW - uniqueness
UR - https://www.scopus.com/record/display.uri?eid=2-s2.0-85166630420&origin=inward&txGid=92920cb8fd1d0e2af1bc3c789b835be1
UR - https://www.mendeley.com/catalogue/48465bb9-837b-34fd-87a3-d57c9dcba6b2/
U2 - 10.1134/S1990478923020151
DO - 10.1134/S1990478923020151
M3 - Article
VL - 17
SP - 370
EP - 384
JO - Journal of Applied and Industrial Mathematics
JF - Journal of Applied and Industrial Mathematics
SN - 1990-4789
IS - 2
ER -
ID: 59255680