Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
The existence theorem for the steady Navier–Stokes problem in exterior axially symmetric 3D domains. / Korobkov, Mikhail; Pileckas, Konstantin; Russo, Remigio.
в: Mathematische Annalen, Том 370, № 1-2, 01.02.2018, стр. 727-784.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - The existence theorem for the steady Navier–Stokes problem in exterior axially symmetric 3D domains
AU - Korobkov, Mikhail
AU - Pileckas, Konstantin
AU - Russo, Remigio
N1 - Publisher Copyright: © 2017, Springer-Verlag Berlin Heidelberg.
PY - 2018/2/1
Y1 - 2018/2/1
N2 - We study the nonhomogeneous boundary value problem for the Navier–Stokes equations of steady motion of a viscous incompressible fluid in a three-dimensional exterior domain with multiply connected boundary. We prove that this problem has a solution for axially symmetric domains and data (without any smallness restrictions on the fluxes). Our main tool is a recent version of the Morse–Sard theorem for Sobolev functions obtained by Bourgain et al. (Rev Mat Iberoam 29(1):1–23, 2013).
AB - We study the nonhomogeneous boundary value problem for the Navier–Stokes equations of steady motion of a viscous incompressible fluid in a three-dimensional exterior domain with multiply connected boundary. We prove that this problem has a solution for axially symmetric domains and data (without any smallness restrictions on the fluxes). Our main tool is a recent version of the Morse–Sard theorem for Sobolev functions obtained by Bourgain et al. (Rev Mat Iberoam 29(1):1–23, 2013).
KW - 35Q30
KW - 76D03
KW - 76D05
UR - http://www.scopus.com/inward/record.url?scp=85019764869&partnerID=8YFLogxK
U2 - 10.1007/s00208-017-1555-x
DO - 10.1007/s00208-017-1555-x
M3 - Article
AN - SCOPUS:85019764869
VL - 370
SP - 727
EP - 784
JO - Mathematische Annalen
JF - Mathematische Annalen
SN - 0025-5831
IS - 1-2
ER -
ID: 9264665