Standard

The existence theorem for the steady Navier–Stokes problem in exterior axially symmetric 3D domains. / Korobkov, Mikhail; Pileckas, Konstantin; Russo, Remigio.

In: Mathematische Annalen, Vol. 370, No. 1-2, 01.02.2018, p. 727-784.

Research output: Contribution to journalArticlepeer-review

Harvard

Korobkov, M, Pileckas, K & Russo, R 2018, 'The existence theorem for the steady Navier–Stokes problem in exterior axially symmetric 3D domains', Mathematische Annalen, vol. 370, no. 1-2, pp. 727-784. https://doi.org/10.1007/s00208-017-1555-x

APA

Vancouver

Korobkov M, Pileckas K, Russo R. The existence theorem for the steady Navier–Stokes problem in exterior axially symmetric 3D domains. Mathematische Annalen. 2018 Feb 1;370(1-2):727-784. doi: 10.1007/s00208-017-1555-x

Author

Korobkov, Mikhail ; Pileckas, Konstantin ; Russo, Remigio. / The existence theorem for the steady Navier–Stokes problem in exterior axially symmetric 3D domains. In: Mathematische Annalen. 2018 ; Vol. 370, No. 1-2. pp. 727-784.

BibTeX

@article{547ec27a47d14b34907de7cf4835f309,
title = "The existence theorem for the steady Navier–Stokes problem in exterior axially symmetric 3D domains",
abstract = "We study the nonhomogeneous boundary value problem for the Navier–Stokes equations of steady motion of a viscous incompressible fluid in a three-dimensional exterior domain with multiply connected boundary. We prove that this problem has a solution for axially symmetric domains and data (without any smallness restrictions on the fluxes). Our main tool is a recent version of the Morse–Sard theorem for Sobolev functions obtained by Bourgain et al. (Rev Mat Iberoam 29(1):1–23, 2013).",
keywords = "35Q30, 76D03, 76D05",
author = "Mikhail Korobkov and Konstantin Pileckas and Remigio Russo",
note = "Publisher Copyright: {\textcopyright} 2017, Springer-Verlag Berlin Heidelberg.",
year = "2018",
month = feb,
day = "1",
doi = "10.1007/s00208-017-1555-x",
language = "English",
volume = "370",
pages = "727--784",
journal = "Mathematische Annalen",
issn = "0025-5831",
publisher = "Springer New York",
number = "1-2",

}

RIS

TY - JOUR

T1 - The existence theorem for the steady Navier–Stokes problem in exterior axially symmetric 3D domains

AU - Korobkov, Mikhail

AU - Pileckas, Konstantin

AU - Russo, Remigio

N1 - Publisher Copyright: © 2017, Springer-Verlag Berlin Heidelberg.

PY - 2018/2/1

Y1 - 2018/2/1

N2 - We study the nonhomogeneous boundary value problem for the Navier–Stokes equations of steady motion of a viscous incompressible fluid in a three-dimensional exterior domain with multiply connected boundary. We prove that this problem has a solution for axially symmetric domains and data (without any smallness restrictions on the fluxes). Our main tool is a recent version of the Morse–Sard theorem for Sobolev functions obtained by Bourgain et al. (Rev Mat Iberoam 29(1):1–23, 2013).

AB - We study the nonhomogeneous boundary value problem for the Navier–Stokes equations of steady motion of a viscous incompressible fluid in a three-dimensional exterior domain with multiply connected boundary. We prove that this problem has a solution for axially symmetric domains and data (without any smallness restrictions on the fluxes). Our main tool is a recent version of the Morse–Sard theorem for Sobolev functions obtained by Bourgain et al. (Rev Mat Iberoam 29(1):1–23, 2013).

KW - 35Q30

KW - 76D03

KW - 76D05

UR - http://www.scopus.com/inward/record.url?scp=85019764869&partnerID=8YFLogxK

U2 - 10.1007/s00208-017-1555-x

DO - 10.1007/s00208-017-1555-x

M3 - Article

AN - SCOPUS:85019764869

VL - 370

SP - 727

EP - 784

JO - Mathematische Annalen

JF - Mathematische Annalen

SN - 0025-5831

IS - 1-2

ER -

ID: 9264665