Standard

The Computational Power of Infinite Time Blum–Shub–Smale Machines. / Koepke, P.; Morozov, A. S.

в: Algebra and Logic, Том 56, № 1, 01.03.2017, стр. 37-62.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

APA

Vancouver

Koepke P, Morozov AS. The Computational Power of Infinite Time Blum–Shub–Smale Machines. Algebra and Logic. 2017 март 1;56(1):37-62. doi: 10.1007/s10469-017-9425-x

Author

Koepke, P. ; Morozov, A. S. / The Computational Power of Infinite Time Blum–Shub–Smale Machines. в: Algebra and Logic. 2017 ; Том 56, № 1. стр. 37-62.

BibTeX

@article{71708e64c2b249178cdcfdd5c0316f79,
title = "The Computational Power of Infinite Time Blum–Shub–Smale Machines",
abstract = "Functions that are computable on infinite time Blum–Shub–Smale machines (ITBM) are characterized via iterated Turing jumps, and we propose a normal form for these functions. It is also proved that the set of ITBM computable reals coincides with ℝ∩Lωω.",
keywords = "BSS machines, computable reals, infinite computations, infinite time Blum–Shub–Smale machines, ITBM, iterated jump, infinite time Blum-Shub-Smale machines",
author = "P. Koepke and Morozov, {A. S.}",
note = "Publisher Copyright: {\textcopyright} 2017, Springer Science+Business Media New York.",
year = "2017",
month = mar,
day = "1",
doi = "10.1007/s10469-017-9425-x",
language = "English",
volume = "56",
pages = "37--62",
journal = "Algebra and Logic",
issn = "0002-5232",
publisher = "Springer US",
number = "1",

}

RIS

TY - JOUR

T1 - The Computational Power of Infinite Time Blum–Shub–Smale Machines

AU - Koepke, P.

AU - Morozov, A. S.

N1 - Publisher Copyright: © 2017, Springer Science+Business Media New York.

PY - 2017/3/1

Y1 - 2017/3/1

N2 - Functions that are computable on infinite time Blum–Shub–Smale machines (ITBM) are characterized via iterated Turing jumps, and we propose a normal form for these functions. It is also proved that the set of ITBM computable reals coincides with ℝ∩Lωω.

AB - Functions that are computable on infinite time Blum–Shub–Smale machines (ITBM) are characterized via iterated Turing jumps, and we propose a normal form for these functions. It is also proved that the set of ITBM computable reals coincides with ℝ∩Lωω.

KW - BSS machines

KW - computable reals

KW - infinite computations

KW - infinite time Blum–Shub–Smale machines

KW - ITBM

KW - iterated jump

KW - infinite time Blum-Shub-Smale machines

UR - http://www.scopus.com/inward/record.url?scp=85018758553&partnerID=8YFLogxK

U2 - 10.1007/s10469-017-9425-x

DO - 10.1007/s10469-017-9425-x

M3 - Article

AN - SCOPUS:85018758553

VL - 56

SP - 37

EP - 62

JO - Algebra and Logic

JF - Algebra and Logic

SN - 0002-5232

IS - 1

ER -

ID: 10257874