The Computational Power of Infinite Time Blum–Shub–Smale Machines. / Koepke, P.; Morozov, A. S.
In: Algebra and Logic, Vol. 56, No. 1, 01.03.2017, p. 37-62.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - The Computational Power of Infinite Time Blum–Shub–Smale Machines
AU - Koepke, P.
AU - Morozov, A. S.
N1 - Publisher Copyright: © 2017, Springer Science+Business Media New York.
PY - 2017/3/1
Y1 - 2017/3/1
N2 - Functions that are computable on infinite time Blum–Shub–Smale machines (ITBM) are characterized via iterated Turing jumps, and we propose a normal form for these functions. It is also proved that the set of ITBM computable reals coincides with ℝ∩Lωω.
AB - Functions that are computable on infinite time Blum–Shub–Smale machines (ITBM) are characterized via iterated Turing jumps, and we propose a normal form for these functions. It is also proved that the set of ITBM computable reals coincides with ℝ∩Lωω.
KW - BSS machines
KW - computable reals
KW - infinite computations
KW - infinite time Blum–Shub–Smale machines
KW - ITBM
KW - iterated jump
KW - infinite time Blum-Shub-Smale machines
UR - http://www.scopus.com/inward/record.url?scp=85018758553&partnerID=8YFLogxK
U2 - 10.1007/s10469-017-9425-x
DO - 10.1007/s10469-017-9425-x
M3 - Article
AN - SCOPUS:85018758553
VL - 56
SP - 37
EP - 62
JO - Algebra and Logic
JF - Algebra and Logic
SN - 0002-5232
IS - 1
ER -
ID: 10257874