Standard

The Δ0 α-Computable Enumerations of the Classes of Projective Planes. / Voĭtov, A. K.

в: Siberian Mathematical Journal, Том 59, № 2, 01.03.2018, стр. 252-263.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

Voĭtov, AK 2018, 'The Δ0 α-Computable Enumerations of the Classes of Projective Planes', Siberian Mathematical Journal, Том. 59, № 2, стр. 252-263. https://doi.org/10.1134/S0037446618020076

APA

Vancouver

Voĭtov AK. The Δ0 α-Computable Enumerations of the Classes of Projective Planes. Siberian Mathematical Journal. 2018 март 1;59(2):252-263. doi: 10.1134/S0037446618020076

Author

Voĭtov, A. K. / The Δ0 α-Computable Enumerations of the Classes of Projective Planes. в: Siberian Mathematical Journal. 2018 ; Том 59, № 2. стр. 252-263.

BibTeX

@article{55f0812a7e1644deb8457c48e24bddeb,
title = "The Δ0 α-Computable Enumerations of the Classes of Projective Planes",
abstract = "Studying computable representations of projective planes, for the classes K of pappian, desarguesian, and all projective planes, we prove that Kc/≃ admits no hyperarithmetical Friedberg enumeration and admits a Friedberg Δ0 α+3-computable enumeration up to a Δ0 α-computable isomorphism.",
keywords = "computable class of models, computable isomorphism, computable model, desarguesian projective plane, freely generated projective plane, pappian projective plane, ISOMORPHISM-PROBLEM",
author = "Voĭtov, {A. K.}",
year = "2018",
month = mar,
day = "1",
doi = "10.1134/S0037446618020076",
language = "English",
volume = "59",
pages = "252--263",
journal = "Siberian Mathematical Journal",
issn = "0037-4466",
publisher = "MAIK NAUKA/INTERPERIODICA/SPRINGER",
number = "2",

}

RIS

TY - JOUR

T1 - The Δ0 α-Computable Enumerations of the Classes of Projective Planes

AU - Voĭtov, A. K.

PY - 2018/3/1

Y1 - 2018/3/1

N2 - Studying computable representations of projective planes, for the classes K of pappian, desarguesian, and all projective planes, we prove that Kc/≃ admits no hyperarithmetical Friedberg enumeration and admits a Friedberg Δ0 α+3-computable enumeration up to a Δ0 α-computable isomorphism.

AB - Studying computable representations of projective planes, for the classes K of pappian, desarguesian, and all projective planes, we prove that Kc/≃ admits no hyperarithmetical Friedberg enumeration and admits a Friedberg Δ0 α+3-computable enumeration up to a Δ0 α-computable isomorphism.

KW - computable class of models

KW - computable isomorphism

KW - computable model

KW - desarguesian projective plane

KW - freely generated projective plane

KW - pappian projective plane

KW - ISOMORPHISM-PROBLEM

UR - http://www.scopus.com/inward/record.url?scp=85046619313&partnerID=8YFLogxK

U2 - 10.1134/S0037446618020076

DO - 10.1134/S0037446618020076

M3 - Article

AN - SCOPUS:85046619313

VL - 59

SP - 252

EP - 263

JO - Siberian Mathematical Journal

JF - Siberian Mathematical Journal

SN - 0037-4466

IS - 2

ER -

ID: 13333897