Research output: Contribution to journal › Article › peer-review
The Δ0 α-Computable Enumerations of the Classes of Projective Planes. / Voĭtov, A. K.
In: Siberian Mathematical Journal, Vol. 59, No. 2, 01.03.2018, p. 252-263.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - The Δ0 α-Computable Enumerations of the Classes of Projective Planes
AU - Voĭtov, A. K.
PY - 2018/3/1
Y1 - 2018/3/1
N2 - Studying computable representations of projective planes, for the classes K of pappian, desarguesian, and all projective planes, we prove that Kc/≃ admits no hyperarithmetical Friedberg enumeration and admits a Friedberg Δ0 α+3-computable enumeration up to a Δ0 α-computable isomorphism.
AB - Studying computable representations of projective planes, for the classes K of pappian, desarguesian, and all projective planes, we prove that Kc/≃ admits no hyperarithmetical Friedberg enumeration and admits a Friedberg Δ0 α+3-computable enumeration up to a Δ0 α-computable isomorphism.
KW - computable class of models
KW - computable isomorphism
KW - computable model
KW - desarguesian projective plane
KW - freely generated projective plane
KW - pappian projective plane
KW - ISOMORPHISM-PROBLEM
UR - http://www.scopus.com/inward/record.url?scp=85046619313&partnerID=8YFLogxK
U2 - 10.1134/S0037446618020076
DO - 10.1134/S0037446618020076
M3 - Article
AN - SCOPUS:85046619313
VL - 59
SP - 252
EP - 263
JO - Siberian Mathematical Journal
JF - Siberian Mathematical Journal
SN - 0037-4466
IS - 2
ER -
ID: 13333897