Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
Some problems of regularity of f-quasimetrics. / Greshnov, Alexandr Valer yevich.
в: Сибирские электронные математические известия, Том 15, 01.01.2018, стр. 355-361.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - Some problems of regularity of f-quasimetrics
AU - Greshnov, Alexandr Valer yevich
PY - 2018/1/1
Y1 - 2018/1/1
N2 - We get a new proof for validity of T4-axiom of separation for weak symmetric f-quasimetric spaces. Using this proof we get T4- property for more general classes of f-quasimetric spaces. We construct the symmetric (q,q)-quasimetric space (X,d) such that distance function d(u,v) is continuous to each variables but (ρ(x0,xn) + ρ(y0; yn)) 0 ρ(xn,yn) = ρ(x0,y0).
AB - We get a new proof for validity of T4-axiom of separation for weak symmetric f-quasimetric spaces. Using this proof we get T4- property for more general classes of f-quasimetric spaces. We construct the symmetric (q,q)-quasimetric space (X,d) such that distance function d(u,v) is continuous to each variables but (ρ(x0,xn) + ρ(y0; yn)) 0 ρ(xn,yn) = ρ(x0,y0).
KW - Convergence
KW - Distance function
KW - F-quasimetric
KW - Interior and closure of a set
KW - Open set
KW - Separation axioms
KW - Weak symmetry
KW - distance function
KW - convergence
KW - SPACES
KW - f-quasimetric
KW - interior and closure of a set
KW - weak symmetry
KW - separation axioms
KW - open set
UR - http://www.scopus.com/inward/record.url?scp=85046073946&partnerID=8YFLogxK
U2 - 10.17377/semi.2018.15.032
DO - 10.17377/semi.2018.15.032
M3 - Article
AN - SCOPUS:85046073946
VL - 15
SP - 355
EP - 361
JO - Сибирские электронные математические известия
JF - Сибирские электронные математические известия
SN - 1813-3304
ER -
ID: 12916250