Standard

Some problems of regularity of f-quasimetrics. / Greshnov, Alexandr Valer yevich.

In: Сибирские электронные математические известия, Vol. 15, 01.01.2018, p. 355-361.

Research output: Contribution to journalArticlepeer-review

Harvard

Greshnov, AVY 2018, 'Some problems of regularity of f-quasimetrics', Сибирские электронные математические известия, vol. 15, pp. 355-361. https://doi.org/10.17377/semi.2018.15.032

APA

Greshnov, A. V. Y. (2018). Some problems of regularity of f-quasimetrics. Сибирские электронные математические известия, 15, 355-361. https://doi.org/10.17377/semi.2018.15.032

Vancouver

Greshnov AVY. Some problems of regularity of f-quasimetrics. Сибирские электронные математические известия. 2018 Jan 1;15:355-361. doi: 10.17377/semi.2018.15.032

Author

Greshnov, Alexandr Valer yevich. / Some problems of regularity of f-quasimetrics. In: Сибирские электронные математические известия. 2018 ; Vol. 15. pp. 355-361.

BibTeX

@article{4fd7862ea79b4ea6881a41ef30226a7d,
title = "Some problems of regularity of f-quasimetrics",
abstract = "We get a new proof for validity of T4-axiom of separation for weak symmetric f-quasimetric spaces. Using this proof we get T4- property for more general classes of f-quasimetric spaces. We construct the symmetric (q,q)-quasimetric space (X,d) such that distance function d(u,v) is continuous to each variables but (ρ(x0,xn) + ρ(y0; yn)) 0 ρ(xn,yn) = ρ(x0,y0).",
keywords = "Convergence, Distance function, F-quasimetric, Interior and closure of a set, Open set, Separation axioms, Weak symmetry, distance function, convergence, SPACES, f-quasimetric, interior and closure of a set, weak symmetry, separation axioms, open set",
author = "Greshnov, {Alexandr Valer yevich}",
year = "2018",
month = jan,
day = "1",
doi = "10.17377/semi.2018.15.032",
language = "English",
volume = "15",
pages = "355--361",
journal = "Сибирские электронные математические известия",
issn = "1813-3304",
publisher = "Sobolev Institute of Mathematics",

}

RIS

TY - JOUR

T1 - Some problems of regularity of f-quasimetrics

AU - Greshnov, Alexandr Valer yevich

PY - 2018/1/1

Y1 - 2018/1/1

N2 - We get a new proof for validity of T4-axiom of separation for weak symmetric f-quasimetric spaces. Using this proof we get T4- property for more general classes of f-quasimetric spaces. We construct the symmetric (q,q)-quasimetric space (X,d) such that distance function d(u,v) is continuous to each variables but (ρ(x0,xn) + ρ(y0; yn)) 0 ρ(xn,yn) = ρ(x0,y0).

AB - We get a new proof for validity of T4-axiom of separation for weak symmetric f-quasimetric spaces. Using this proof we get T4- property for more general classes of f-quasimetric spaces. We construct the symmetric (q,q)-quasimetric space (X,d) such that distance function d(u,v) is continuous to each variables but (ρ(x0,xn) + ρ(y0; yn)) 0 ρ(xn,yn) = ρ(x0,y0).

KW - Convergence

KW - Distance function

KW - F-quasimetric

KW - Interior and closure of a set

KW - Open set

KW - Separation axioms

KW - Weak symmetry

KW - distance function

KW - convergence

KW - SPACES

KW - f-quasimetric

KW - interior and closure of a set

KW - weak symmetry

KW - separation axioms

KW - open set

UR - http://www.scopus.com/inward/record.url?scp=85046073946&partnerID=8YFLogxK

U2 - 10.17377/semi.2018.15.032

DO - 10.17377/semi.2018.15.032

M3 - Article

AN - SCOPUS:85046073946

VL - 15

SP - 355

EP - 361

JO - Сибирские электронные математические известия

JF - Сибирские электронные математические известия

SN - 1813-3304

ER -

ID: 12916250