Standard

Small length circuits in Eulerian orientations of graphs. / Perezhogin, Aleksei L’vovich; Bykov, Igor Sergeevich; Avgustinovich, Sergei Vladimirovich.

в: Siberian Electronic Mathematical Reports, Том 21, № 1, 06.06.2024, стр. 370-382.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

APA

Vancouver

Perezhogin AL, Bykov IS, Avgustinovich SV. Small length circuits in Eulerian orientations of graphs. Siberian Electronic Mathematical Reports. 2024 июнь 6;21(1):370-382. doi: 10.33048/semi.2024.21.028

Author

BibTeX

@article{07b7f02171a742a9bbe2992a00d3b21d,
title = "Small length circuits in Eulerian orientations of graphs",
abstract = "In this paper we investigate estimates for number of 3-, 4- and 5-circuits in eulerian tournaments and 4-circuits in eulerian orientations of complete bipartite graphs and hypercubes. By using obtained relations, we prove uniqueness (up to isomorphism) of orientations, which reach maximum number of 4-circuits in all graph families mentioned above.",
keywords = "Eulerian orientation of graph, boolean cube, circuit, complete bipartite graph, tournament",
author = "Perezhogin, {Aleksei L{\textquoteright}vovich} and Bykov, {Igor Sergeevich} and Avgustinovich, {Sergei Vladimirovich}",
note = "Исследование выполнено в рамках государственного задания ИМ СО РАН (проект № FWNF-2022-0018).",
year = "2024",
month = jun,
day = "6",
doi = "10.33048/semi.2024.21.028",
language = "English",
volume = "21",
pages = "370--382",
journal = "Сибирские электронные математические известия",
issn = "1813-3304",
publisher = "Sobolev Institute of Mathematics",
number = "1",

}

RIS

TY - JOUR

T1 - Small length circuits in Eulerian orientations of graphs

AU - Perezhogin, Aleksei L’vovich

AU - Bykov, Igor Sergeevich

AU - Avgustinovich, Sergei Vladimirovich

N1 - Исследование выполнено в рамках государственного задания ИМ СО РАН (проект № FWNF-2022-0018).

PY - 2024/6/6

Y1 - 2024/6/6

N2 - In this paper we investigate estimates for number of 3-, 4- and 5-circuits in eulerian tournaments and 4-circuits in eulerian orientations of complete bipartite graphs and hypercubes. By using obtained relations, we prove uniqueness (up to isomorphism) of orientations, which reach maximum number of 4-circuits in all graph families mentioned above.

AB - In this paper we investigate estimates for number of 3-, 4- and 5-circuits in eulerian tournaments and 4-circuits in eulerian orientations of complete bipartite graphs and hypercubes. By using obtained relations, we prove uniqueness (up to isomorphism) of orientations, which reach maximum number of 4-circuits in all graph families mentioned above.

KW - Eulerian orientation of graph

KW - boolean cube

KW - circuit

KW - complete bipartite graph

KW - tournament

UR - https://www.scopus.com/record/display.uri?eid=2-s2.0-85204419360&origin=inward&txGid=498a1778e6376c180a38cd215529f726

UR - https://www.webofscience.com/wos/woscc/full-record/WOS:001283159700006

UR - https://www.mendeley.com/catalogue/10b2e019-8215-3fd0-bf75-053f21366d0f/

U2 - 10.33048/semi.2024.21.028

DO - 10.33048/semi.2024.21.028

M3 - Article

VL - 21

SP - 370

EP - 382

JO - Сибирские электронные математические известия

JF - Сибирские электронные математические известия

SN - 1813-3304

IS - 1

ER -

ID: 61164004