Research output: Contribution to journal › Article › peer-review
Small length circuits in Eulerian orientations of graphs. / Perezhogin, Aleksei L’vovich; Bykov, Igor Sergeevich; Avgustinovich, Sergei Vladimirovich.
In: Siberian Electronic Mathematical Reports, Vol. 21, No. 1, 06.06.2024, p. 370-382.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - Small length circuits in Eulerian orientations of graphs
AU - Perezhogin, Aleksei L’vovich
AU - Bykov, Igor Sergeevich
AU - Avgustinovich, Sergei Vladimirovich
N1 - Исследование выполнено в рамках государственного задания ИМ СО РАН (проект № FWNF-2022-0018).
PY - 2024/6/6
Y1 - 2024/6/6
N2 - In this paper we investigate estimates for number of 3-, 4- and 5-circuits in eulerian tournaments and 4-circuits in eulerian orientations of complete bipartite graphs and hypercubes. By using obtained relations, we prove uniqueness (up to isomorphism) of orientations, which reach maximum number of 4-circuits in all graph families mentioned above.
AB - In this paper we investigate estimates for number of 3-, 4- and 5-circuits in eulerian tournaments and 4-circuits in eulerian orientations of complete bipartite graphs and hypercubes. By using obtained relations, we prove uniqueness (up to isomorphism) of orientations, which reach maximum number of 4-circuits in all graph families mentioned above.
KW - Eulerian orientation of graph
KW - boolean cube
KW - circuit
KW - complete bipartite graph
KW - tournament
UR - https://www.scopus.com/record/display.uri?eid=2-s2.0-85204419360&origin=inward&txGid=498a1778e6376c180a38cd215529f726
UR - https://www.webofscience.com/wos/woscc/full-record/WOS:001283159700006
UR - https://www.mendeley.com/catalogue/10b2e019-8215-3fd0-bf75-053f21366d0f/
U2 - 10.33048/semi.2024.21.028
DO - 10.33048/semi.2024.21.028
M3 - Article
VL - 21
SP - 370
EP - 382
JO - Сибирские электронные математические известия
JF - Сибирские электронные математические известия
SN - 1813-3304
IS - 1
ER -
ID: 61164004