Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
Rota-Baxter operators and non-skew-symmetric solutions of the classical Yang–Baxter equation on quadratic Lie algebras. / Goncharov, Maxim.
в: Сибирские электронные математические известия, Том 16, 01.2019, стр. 2098-2109.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - Rota-Baxter operators and non-skew-symmetric solutions of the classical Yang–Baxter equation on quadratic Lie algebras
AU - Goncharov, Maxim
N1 - Funding Information: Goncharov, M.E., Rota-Baxter operators and non-skew-symmetric solutions of the classical Yang-Baxter equation on quadratic Lie algebras. ©c 2019 Goncharov M.E. The work is supported by the Program of fundamental scientific researches of the Siberian Branch of Russian Academy of Sciences, I.1.1, project 0314-2019-0001. Publisher Copyright: © 2019 Goncharov M.E. Copyright: Copyright 2020 Elsevier B.V., All rights reserved.
PY - 2019/1
Y1 - 2019/1
N2 - We study possible connections between Rota-Baxter operators of non-zero weight and non-skew-symmetric solutions of the classical Yang-Baxter equation on finite-dimensional quadratic Lie algebras. The particular attention is made to the case when for a solution r the element r + r(r) is L-invariant.
AB - We study possible connections between Rota-Baxter operators of non-zero weight and non-skew-symmetric solutions of the classical Yang-Baxter equation on finite-dimensional quadratic Lie algebras. The particular attention is made to the case when for a solution r the element r + r(r) is L-invariant.
KW - classical Yang-Baxter equation
KW - non-associative bialgebra
KW - quadratic Lie algebra
KW - Rota-Baxter operator
KW - BIALGEBRAS
UR - http://www.scopus.com/inward/record.url?scp=85096309649&partnerID=8YFLogxK
UR - https://www.elibrary.ru/item.asp?id=42735191
U2 - 10.33048/semi.2019.16.149
DO - 10.33048/semi.2019.16.149
M3 - Article
AN - SCOPUS:85096309649
VL - 16
SP - 2098
EP - 2109
JO - Сибирские электронные математические известия
JF - Сибирские электронные математические известия
SN - 1813-3304
ER -
ID: 26028285