Standard

Rota-Baxter operators and non-skew-symmetric solutions of the classical Yang–Baxter equation on quadratic Lie algebras. / Goncharov, Maxim.

In: Сибирские электронные математические известия, Vol. 16, 01.2019, p. 2098-2109.

Research output: Contribution to journalArticlepeer-review

Harvard

Goncharov, M 2019, 'Rota-Baxter operators and non-skew-symmetric solutions of the classical Yang–Baxter equation on quadratic Lie algebras', Сибирские электронные математические известия, vol. 16, pp. 2098-2109. https://doi.org/10.33048/semi.2019.16.149

APA

Vancouver

Goncharov M. Rota-Baxter operators and non-skew-symmetric solutions of the classical Yang–Baxter equation on quadratic Lie algebras. Сибирские электронные математические известия. 2019 Jan;16:2098-2109. doi: 10.33048/semi.2019.16.149

Author

Goncharov, Maxim. / Rota-Baxter operators and non-skew-symmetric solutions of the classical Yang–Baxter equation on quadratic Lie algebras. In: Сибирские электронные математические известия. 2019 ; Vol. 16. pp. 2098-2109.

BibTeX

@article{7afc717b23f7485d85e0455951dd219f,
title = "Rota-Baxter operators and non-skew-symmetric solutions of the classical Yang–Baxter equation on quadratic Lie algebras",
abstract = "We study possible connections between Rota-Baxter operators of non-zero weight and non-skew-symmetric solutions of the classical Yang-Baxter equation on finite-dimensional quadratic Lie algebras. The particular attention is made to the case when for a solution r the element r + r(r) is L-invariant.",
keywords = "classical Yang-Baxter equation, non-associative bialgebra, quadratic Lie algebra, Rota-Baxter operator, BIALGEBRAS",
author = "Maxim Goncharov",
note = "Funding Information: Goncharov, M.E., Rota-Baxter operators and non-skew-symmetric solutions of the classical Yang-Baxter equation on quadratic Lie algebras. {\textcopyright}c 2019 Goncharov M.E. The work is supported by the Program of fundamental scientific researches of the Siberian Branch of Russian Academy of Sciences, I.1.1, project 0314-2019-0001. Publisher Copyright: {\textcopyright} 2019 Goncharov M.E. Copyright: Copyright 2020 Elsevier B.V., All rights reserved.",
year = "2019",
month = jan,
doi = "10.33048/semi.2019.16.149",
language = "English",
volume = "16",
pages = "2098--2109",
journal = "Сибирские электронные математические известия",
issn = "1813-3304",
publisher = "Sobolev Institute of Mathematics",

}

RIS

TY - JOUR

T1 - Rota-Baxter operators and non-skew-symmetric solutions of the classical Yang–Baxter equation on quadratic Lie algebras

AU - Goncharov, Maxim

N1 - Funding Information: Goncharov, M.E., Rota-Baxter operators and non-skew-symmetric solutions of the classical Yang-Baxter equation on quadratic Lie algebras. ©c 2019 Goncharov M.E. The work is supported by the Program of fundamental scientific researches of the Siberian Branch of Russian Academy of Sciences, I.1.1, project 0314-2019-0001. Publisher Copyright: © 2019 Goncharov M.E. Copyright: Copyright 2020 Elsevier B.V., All rights reserved.

PY - 2019/1

Y1 - 2019/1

N2 - We study possible connections between Rota-Baxter operators of non-zero weight and non-skew-symmetric solutions of the classical Yang-Baxter equation on finite-dimensional quadratic Lie algebras. The particular attention is made to the case when for a solution r the element r + r(r) is L-invariant.

AB - We study possible connections between Rota-Baxter operators of non-zero weight and non-skew-symmetric solutions of the classical Yang-Baxter equation on finite-dimensional quadratic Lie algebras. The particular attention is made to the case when for a solution r the element r + r(r) is L-invariant.

KW - classical Yang-Baxter equation

KW - non-associative bialgebra

KW - quadratic Lie algebra

KW - Rota-Baxter operator

KW - BIALGEBRAS

UR - http://www.scopus.com/inward/record.url?scp=85096309649&partnerID=8YFLogxK

UR - https://www.elibrary.ru/item.asp?id=42735191

U2 - 10.33048/semi.2019.16.149

DO - 10.33048/semi.2019.16.149

M3 - Article

AN - SCOPUS:85096309649

VL - 16

SP - 2098

EP - 2109

JO - Сибирские электронные математические известия

JF - Сибирские электронные математические известия

SN - 1813-3304

ER -

ID: 26028285