Standard

On universal conformal envelopes for quadratic Lie conformal algebras. / Kozlov, Roman A.

в: Communications in Algebra, Том 52, № 2, 01.02.2024, стр. 733-746.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

APA

Vancouver

Kozlov RA. On universal conformal envelopes for quadratic Lie conformal algebras. Communications in Algebra. 2024 февр. 1;52(2):733-746. doi: 10.1080/00927872.2023.2248250

Author

Kozlov, Roman A. / On universal conformal envelopes for quadratic Lie conformal algebras. в: Communications in Algebra. 2024 ; Том 52, № 2. стр. 733-746.

BibTeX

@article{6d24ea68944b407e8c4eafe3d2e3e8cc,
title = "On universal conformal envelopes for quadratic Lie conformal algebras",
abstract = "We prove that every quadratic Lie conformal algebra constructed on a special Gel{\textquoteright}fand–Dorfman algebra embeds into the universal enveloping associative conformal algebra with a locality function bound N = 3.",
keywords = "Associative conformal envelopes, Gel{\textquoteright}fand-Dorfman algebras, Lie conformal algebras, Poisson envelopes",
author = "Kozlov, {Roman A.}",
note = "The work is supported by Mathematical Center in Akademgorodok, grant 075-15-2022-282.",
year = "2024",
month = feb,
day = "1",
doi = "10.1080/00927872.2023.2248250",
language = "English",
volume = "52",
pages = "733--746",
journal = "Communications in Algebra",
issn = "0092-7872",
publisher = "Taylor and Francis Ltd.",
number = "2",

}

RIS

TY - JOUR

T1 - On universal conformal envelopes for quadratic Lie conformal algebras

AU - Kozlov, Roman A.

N1 - The work is supported by Mathematical Center in Akademgorodok, grant 075-15-2022-282.

PY - 2024/2/1

Y1 - 2024/2/1

N2 - We prove that every quadratic Lie conformal algebra constructed on a special Gel’fand–Dorfman algebra embeds into the universal enveloping associative conformal algebra with a locality function bound N = 3.

AB - We prove that every quadratic Lie conformal algebra constructed on a special Gel’fand–Dorfman algebra embeds into the universal enveloping associative conformal algebra with a locality function bound N = 3.

KW - Associative conformal envelopes

KW - Gel’fand-Dorfman algebras

KW - Lie conformal algebras

KW - Poisson envelopes

UR - https://www.scopus.com/record/display.uri?eid=2-s2.0-85168651830&origin=inward&txGid=9374e311c8872c05724b95430204f69d

UR - https://www.mendeley.com/catalogue/1245c149-25eb-32ef-94ef-9b979ff9d5ad/

U2 - 10.1080/00927872.2023.2248250

DO - 10.1080/00927872.2023.2248250

M3 - Article

VL - 52

SP - 733

EP - 746

JO - Communications in Algebra

JF - Communications in Algebra

SN - 0092-7872

IS - 2

ER -

ID: 59172986