Research output: Contribution to journal › Article › peer-review
On universal conformal envelopes for quadratic Lie conformal algebras. / Kozlov, Roman A.
In: Communications in Algebra, Vol. 52, No. 2, 01.02.2024, p. 733-746.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - On universal conformal envelopes for quadratic Lie conformal algebras
AU - Kozlov, Roman A.
N1 - The work is supported by Mathematical Center in Akademgorodok, grant 075-15-2022-282.
PY - 2024/2/1
Y1 - 2024/2/1
N2 - We prove that every quadratic Lie conformal algebra constructed on a special Gel’fand–Dorfman algebra embeds into the universal enveloping associative conformal algebra with a locality function bound N = 3.
AB - We prove that every quadratic Lie conformal algebra constructed on a special Gel’fand–Dorfman algebra embeds into the universal enveloping associative conformal algebra with a locality function bound N = 3.
KW - Associative conformal envelopes
KW - Gel’fand-Dorfman algebras
KW - Lie conformal algebras
KW - Poisson envelopes
UR - https://www.scopus.com/record/display.uri?eid=2-s2.0-85168651830&origin=inward&txGid=9374e311c8872c05724b95430204f69d
UR - https://www.mendeley.com/catalogue/1245c149-25eb-32ef-94ef-9b979ff9d5ad/
U2 - 10.1080/00927872.2023.2248250
DO - 10.1080/00927872.2023.2248250
M3 - Article
VL - 52
SP - 733
EP - 746
JO - Communications in Algebra
JF - Communications in Algebra
SN - 0092-7872
IS - 2
ER -
ID: 59172986