Standard

On quasi-equational bases for differential groupoids and unary algebras. / Kravchenko, Aleksandr Vladimirovich; Nurakunov, Anvar Mukhparovich; Schwidefsky, Marina Vladimirovna.

в: Сибирские электронные математические известия, Том 14, 01.01.2017, стр. 1330-1337.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

Kravchenko, AV, Nurakunov, AM & Schwidefsky, MV 2017, 'On quasi-equational bases for differential groupoids and unary algebras', Сибирские электронные математические известия, Том. 14, стр. 1330-1337. https://doi.org/10.17377/semi.2017.14.114

APA

Kravchenko, A. V., Nurakunov, A. M., & Schwidefsky, M. V. (2017). On quasi-equational bases for differential groupoids and unary algebras. Сибирские электронные математические известия, 14, 1330-1337. https://doi.org/10.17377/semi.2017.14.114

Vancouver

Kravchenko AV, Nurakunov AM, Schwidefsky MV. On quasi-equational bases for differential groupoids and unary algebras. Сибирские электронные математические известия. 2017 янв. 1;14:1330-1337. doi: 10.17377/semi.2017.14.114

Author

Kravchenko, Aleksandr Vladimirovich ; Nurakunov, Anvar Mukhparovich ; Schwidefsky, Marina Vladimirovna. / On quasi-equational bases for differential groupoids and unary algebras. в: Сибирские электронные математические известия. 2017 ; Том 14. стр. 1330-1337.

BibTeX

@article{02766d8d6d2642a2b6db289d02aa0a46,
title = "On quasi-equational bases for differential groupoids and unary algebras",
abstract = " As is known, there exist 2 ω quasivarieties of differential groupoids and unary algebras with no independent quasi-equational basis. In the present article, we show that there exist 2 ω such quasivarieties with an ω-independent quasi-equational basis. We also find a recursive independent quasi-equational basis for the intersection of those quasivarieties. ",
keywords = "Differential groupoid, Quasi-equational basis, Quasivariety, Unary algebra, unary algebra, differential groupoid, LATTICES, ANTIVARIETIES, quasivariety, quasi-equational basis, QUASIVARIETIES",
author = "Kravchenko, {Aleksandr Vladimirovich} and Nurakunov, {Anvar Mukhparovich} and Schwidefsky, {Marina Vladimirovna}",
year = "2017",
month = jan,
day = "1",
doi = "10.17377/semi.2017.14.114",
language = "English",
volume = "14",
pages = "1330--1337",
journal = "Сибирские электронные математические известия",
issn = "1813-3304",
publisher = "Sobolev Institute of Mathematics",

}

RIS

TY - JOUR

T1 - On quasi-equational bases for differential groupoids and unary algebras

AU - Kravchenko, Aleksandr Vladimirovich

AU - Nurakunov, Anvar Mukhparovich

AU - Schwidefsky, Marina Vladimirovna

PY - 2017/1/1

Y1 - 2017/1/1

N2 - As is known, there exist 2 ω quasivarieties of differential groupoids and unary algebras with no independent quasi-equational basis. In the present article, we show that there exist 2 ω such quasivarieties with an ω-independent quasi-equational basis. We also find a recursive independent quasi-equational basis for the intersection of those quasivarieties.

AB - As is known, there exist 2 ω quasivarieties of differential groupoids and unary algebras with no independent quasi-equational basis. In the present article, we show that there exist 2 ω such quasivarieties with an ω-independent quasi-equational basis. We also find a recursive independent quasi-equational basis for the intersection of those quasivarieties.

KW - Differential groupoid

KW - Quasi-equational basis

KW - Quasivariety

KW - Unary algebra

KW - unary algebra

KW - differential groupoid

KW - LATTICES

KW - ANTIVARIETIES

KW - quasivariety

KW - quasi-equational basis

KW - QUASIVARIETIES

UR - http://www.scopus.com/inward/record.url?scp=85049317977&partnerID=8YFLogxK

U2 - 10.17377/semi.2017.14.114

DO - 10.17377/semi.2017.14.114

M3 - Article

AN - SCOPUS:85049317977

VL - 14

SP - 1330

EP - 1337

JO - Сибирские электронные математические известия

JF - Сибирские электронные математические известия

SN - 1813-3304

ER -

ID: 19660859