On quasi-equational bases for differential groupoids and unary algebras. / Kravchenko, Aleksandr Vladimirovich; Nurakunov, Anvar Mukhparovich; Schwidefsky, Marina Vladimirovna.
In: Сибирские электронные математические известия, Vol. 14, 01.01.2017, p. 1330-1337.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - On quasi-equational bases for differential groupoids and unary algebras
AU - Kravchenko, Aleksandr Vladimirovich
AU - Nurakunov, Anvar Mukhparovich
AU - Schwidefsky, Marina Vladimirovna
PY - 2017/1/1
Y1 - 2017/1/1
N2 - As is known, there exist 2 ω quasivarieties of differential groupoids and unary algebras with no independent quasi-equational basis. In the present article, we show that there exist 2 ω such quasivarieties with an ω-independent quasi-equational basis. We also find a recursive independent quasi-equational basis for the intersection of those quasivarieties.
AB - As is known, there exist 2 ω quasivarieties of differential groupoids and unary algebras with no independent quasi-equational basis. In the present article, we show that there exist 2 ω such quasivarieties with an ω-independent quasi-equational basis. We also find a recursive independent quasi-equational basis for the intersection of those quasivarieties.
KW - Differential groupoid
KW - Quasi-equational basis
KW - Quasivariety
KW - Unary algebra
KW - unary algebra
KW - differential groupoid
KW - LATTICES
KW - ANTIVARIETIES
KW - quasivariety
KW - quasi-equational basis
KW - QUASIVARIETIES
UR - http://www.scopus.com/inward/record.url?scp=85049317977&partnerID=8YFLogxK
U2 - 10.17377/semi.2017.14.114
DO - 10.17377/semi.2017.14.114
M3 - Article
AN - SCOPUS:85049317977
VL - 14
SP - 1330
EP - 1337
JO - Сибирские электронные математические известия
JF - Сибирские электронные математические известия
SN - 1813-3304
ER -
ID: 19660859