Standard

Numerical algorithm with fourth-order accuracy for the direct Zakharov-Shabat problem. / Medvedev, Sergey; Vaseva, Irina; Chekhovskoy, Igor и др.

в: Optics Letters, Том 44, № 9, 01.05.2019, стр. 2264-2267.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

APA

Vancouver

Medvedev S, Vaseva I, Chekhovskoy I, Fedoruk M. Numerical algorithm with fourth-order accuracy for the direct Zakharov-Shabat problem. Optics Letters. 2019 май 1;44(9):2264-2267. doi: 10.1364/OL.44.002264

Author

Medvedev, Sergey ; Vaseva, Irina ; Chekhovskoy, Igor и др. / Numerical algorithm with fourth-order accuracy for the direct Zakharov-Shabat problem. в: Optics Letters. 2019 ; Том 44, № 9. стр. 2264-2267.

BibTeX

@article{61fc5d80059f456b9befb6a86383a78b,
title = "Numerical algorithm with fourth-order accuracy for the direct Zakharov-Shabat problem",
abstract = "We propose a finite-difference algorithm for solving the initial problem for the Zakharov-Shabat system. This method has the fourth order of accuracy and represents a generalization of the second-order Boffetta-Osborne scheme. Our method permits the Zakharov-Shabat spectral problem to be solved more effectively for continuous and discrete spectra.",
keywords = "NONLINEAR FOURIER-TRANSFORM, TRANSMISSION, COMPUTATION",
author = "Sergey Medvedev and Irina Vaseva and Igor Chekhovskoy and Mikhail Fedoruk",
note = "Publisher Copyright: {\textcopyright} 2019 Optical Society of America",
year = "2019",
month = may,
day = "1",
doi = "10.1364/OL.44.002264",
language = "English",
volume = "44",
pages = "2264--2267",
journal = "Optics Letters",
issn = "0146-9592",
publisher = "The Optical Society",
number = "9",

}

RIS

TY - JOUR

T1 - Numerical algorithm with fourth-order accuracy for the direct Zakharov-Shabat problem

AU - Medvedev, Sergey

AU - Vaseva, Irina

AU - Chekhovskoy, Igor

AU - Fedoruk, Mikhail

N1 - Publisher Copyright: © 2019 Optical Society of America

PY - 2019/5/1

Y1 - 2019/5/1

N2 - We propose a finite-difference algorithm for solving the initial problem for the Zakharov-Shabat system. This method has the fourth order of accuracy and represents a generalization of the second-order Boffetta-Osborne scheme. Our method permits the Zakharov-Shabat spectral problem to be solved more effectively for continuous and discrete spectra.

AB - We propose a finite-difference algorithm for solving the initial problem for the Zakharov-Shabat system. This method has the fourth order of accuracy and represents a generalization of the second-order Boffetta-Osborne scheme. Our method permits the Zakharov-Shabat spectral problem to be solved more effectively for continuous and discrete spectra.

KW - NONLINEAR FOURIER-TRANSFORM

KW - TRANSMISSION

KW - COMPUTATION

UR - http://www.scopus.com/inward/record.url?scp=85065488853&partnerID=8YFLogxK

U2 - 10.1364/OL.44.002264

DO - 10.1364/OL.44.002264

M3 - Article

C2 - 31042199

AN - SCOPUS:85065488853

VL - 44

SP - 2264

EP - 2267

JO - Optics Letters

JF - Optics Letters

SN - 0146-9592

IS - 9

ER -

ID: 20039386