Research output: Contribution to journal › Article › peer-review
Numerical algorithm with fourth-order accuracy for the direct Zakharov-Shabat problem. / Medvedev, Sergey; Vaseva, Irina; Chekhovskoy, Igor et al.
In: Optics Letters, Vol. 44, No. 9, 01.05.2019, p. 2264-2267.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - Numerical algorithm with fourth-order accuracy for the direct Zakharov-Shabat problem
AU - Medvedev, Sergey
AU - Vaseva, Irina
AU - Chekhovskoy, Igor
AU - Fedoruk, Mikhail
N1 - Publisher Copyright: © 2019 Optical Society of America
PY - 2019/5/1
Y1 - 2019/5/1
N2 - We propose a finite-difference algorithm for solving the initial problem for the Zakharov-Shabat system. This method has the fourth order of accuracy and represents a generalization of the second-order Boffetta-Osborne scheme. Our method permits the Zakharov-Shabat spectral problem to be solved more effectively for continuous and discrete spectra.
AB - We propose a finite-difference algorithm for solving the initial problem for the Zakharov-Shabat system. This method has the fourth order of accuracy and represents a generalization of the second-order Boffetta-Osborne scheme. Our method permits the Zakharov-Shabat spectral problem to be solved more effectively for continuous and discrete spectra.
KW - NONLINEAR FOURIER-TRANSFORM
KW - TRANSMISSION
KW - COMPUTATION
UR - http://www.scopus.com/inward/record.url?scp=85065488853&partnerID=8YFLogxK
U2 - 10.1364/OL.44.002264
DO - 10.1364/OL.44.002264
M3 - Article
C2 - 31042199
AN - SCOPUS:85065488853
VL - 44
SP - 2264
EP - 2267
JO - Optics Letters
JF - Optics Letters
SN - 0146-9592
IS - 9
ER -
ID: 20039386