Standard

Edge states on the curved boundary of a 2D topological insulator. / Entin, M. V.; Magarill, L. I.

в: Europhysics Letters, Том 120, № 3, 37003, 01.11.2017.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

APA

Vancouver

Entin MV, Magarill LI. Edge states on the curved boundary of a 2D topological insulator. Europhysics Letters. 2017 нояб. 1;120(3):37003. doi: 10.1209/0295-5075/120/37003

Author

Entin, M. V. ; Magarill, L. I. / Edge states on the curved boundary of a 2D topological insulator. в: Europhysics Letters. 2017 ; Том 120, № 3.

BibTeX

@article{5d693e7bd0ca400bada09c09168e10bf,
title = "Edge states on the curved boundary of a 2D topological insulator",
abstract = "The adiabatic 2 × 2 Hamiltonian for the edge states on the curved boundary of a 2D topological insulator (TI) is deduced from the 4 × 4 Volkov-Pankratov Hamiltonian of 2D TI. The self-energy obeys linear dependence on the edge momentum. It is shown that in the case of a close edge the longitudinal momentum is quantized by 2π(n+ 1/2)h/L, where L is the edge length, n is integer. The results are supported by the exact solution of the Schr{\"o}dinger equation for the TI disk inserted into an ordinary 2D insulator.",
author = "Entin, {M. V.} and Magarill, {L. I.}",
year = "2017",
month = nov,
day = "1",
doi = "10.1209/0295-5075/120/37003",
language = "English",
volume = "120",
journal = "Europhysics Letters",
issn = "0295-5075",
publisher = "IOP Publishing Ltd.",
number = "3",

}

RIS

TY - JOUR

T1 - Edge states on the curved boundary of a 2D topological insulator

AU - Entin, M. V.

AU - Magarill, L. I.

PY - 2017/11/1

Y1 - 2017/11/1

N2 - The adiabatic 2 × 2 Hamiltonian for the edge states on the curved boundary of a 2D topological insulator (TI) is deduced from the 4 × 4 Volkov-Pankratov Hamiltonian of 2D TI. The self-energy obeys linear dependence on the edge momentum. It is shown that in the case of a close edge the longitudinal momentum is quantized by 2π(n+ 1/2)h/L, where L is the edge length, n is integer. The results are supported by the exact solution of the Schrödinger equation for the TI disk inserted into an ordinary 2D insulator.

AB - The adiabatic 2 × 2 Hamiltonian for the edge states on the curved boundary of a 2D topological insulator (TI) is deduced from the 4 × 4 Volkov-Pankratov Hamiltonian of 2D TI. The self-energy obeys linear dependence on the edge momentum. It is shown that in the case of a close edge the longitudinal momentum is quantized by 2π(n+ 1/2)h/L, where L is the edge length, n is integer. The results are supported by the exact solution of the Schrödinger equation for the TI disk inserted into an ordinary 2D insulator.

UR - http://www.scopus.com/inward/record.url?scp=85042148072&partnerID=8YFLogxK

U2 - 10.1209/0295-5075/120/37003

DO - 10.1209/0295-5075/120/37003

M3 - Article

AN - SCOPUS:85042148072

VL - 120

JO - Europhysics Letters

JF - Europhysics Letters

SN - 0295-5075

IS - 3

M1 - 37003

ER -

ID: 9952730