Standard

Conformal Yang–Baxter equation on Cur(sl2(C)). / Gubarev, Vsevolod; Kozlov, Roman.

в: Journal of Mathematical Physics, Том 64, № 1, 011704, 01.01.2023.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

Gubarev, V & Kozlov, R 2023, 'Conformal Yang–Baxter equation on Cur(sl2(C))', Journal of Mathematical Physics, Том. 64, № 1, 011704. https://doi.org/10.1063/5.0127927

APA

Vancouver

Gubarev V, Kozlov R. Conformal Yang–Baxter equation on Cur(sl2(C)). Journal of Mathematical Physics. 2023 янв. 1;64(1):011704. doi: 10.1063/5.0127927

Author

Gubarev, Vsevolod ; Kozlov, Roman. / Conformal Yang–Baxter equation on Cur(sl2(C)). в: Journal of Mathematical Physics. 2023 ; Том 64, № 1.

BibTeX

@article{8575b98c2ac147b4be423243e3d27cd4,
title = "Conformal Yang–Baxter equation on Cur(sl2(C))",
abstract = "In 2008, Liberati [J. Algebra 319, 2295–2318 (2008)] defined what a conformal Lie bialgebra is and introduced the conformal classical Yang–Baxter equation (CCYBE). An L-invariant solution to the weak version of CCYBE provides a conformal Lie bialgebra structure. We describe all solutions to the CCYBE on the current Lie conformal algebra Cur(sl2(C)) and to the weak version of it.",
author = "Vsevolod Gubarev and Roman Kozlov",
note = "The authors are supported by a grant from the President of the Russian Federation for young scientists (Grant No. MK-1241.2021.1.1).",
year = "2023",
month = jan,
day = "1",
doi = "10.1063/5.0127927",
language = "English",
volume = "64",
journal = "Journal of Mathematical Physics",
issn = "0022-2488",
publisher = "American Institute of Physics",
number = "1",

}

RIS

TY - JOUR

T1 - Conformal Yang–Baxter equation on Cur(sl2(C))

AU - Gubarev, Vsevolod

AU - Kozlov, Roman

N1 - The authors are supported by a grant from the President of the Russian Federation for young scientists (Grant No. MK-1241.2021.1.1).

PY - 2023/1/1

Y1 - 2023/1/1

N2 - In 2008, Liberati [J. Algebra 319, 2295–2318 (2008)] defined what a conformal Lie bialgebra is and introduced the conformal classical Yang–Baxter equation (CCYBE). An L-invariant solution to the weak version of CCYBE provides a conformal Lie bialgebra structure. We describe all solutions to the CCYBE on the current Lie conformal algebra Cur(sl2(C)) and to the weak version of it.

AB - In 2008, Liberati [J. Algebra 319, 2295–2318 (2008)] defined what a conformal Lie bialgebra is and introduced the conformal classical Yang–Baxter equation (CCYBE). An L-invariant solution to the weak version of CCYBE provides a conformal Lie bialgebra structure. We describe all solutions to the CCYBE on the current Lie conformal algebra Cur(sl2(C)) and to the weak version of it.

UR - https://www.scopus.com/record/display.uri?eid=2-s2.0-85147179734&origin=inward&txGid=ea349c6afcc96d8fbfd7ebf9dee3c886

UR - https://www.mendeley.com/catalogue/49df1cd5-4bf7-388a-97ad-cfc9dd4a74ed/

U2 - 10.1063/5.0127927

DO - 10.1063/5.0127927

M3 - Article

VL - 64

JO - Journal of Mathematical Physics

JF - Journal of Mathematical Physics

SN - 0022-2488

IS - 1

M1 - 011704

ER -

ID: 56390272