Research output: Contribution to journal › Article › peer-review
Conformal Yang–Baxter equation on Cur(sl2(C)). / Gubarev, Vsevolod; Kozlov, Roman.
In: Journal of Mathematical Physics, Vol. 64, No. 1, 011704, 01.01.2023.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - Conformal Yang–Baxter equation on Cur(sl2(C))
AU - Gubarev, Vsevolod
AU - Kozlov, Roman
N1 - The authors are supported by a grant from the President of the Russian Federation for young scientists (Grant No. MK-1241.2021.1.1).
PY - 2023/1/1
Y1 - 2023/1/1
N2 - In 2008, Liberati [J. Algebra 319, 2295–2318 (2008)] defined what a conformal Lie bialgebra is and introduced the conformal classical Yang–Baxter equation (CCYBE). An L-invariant solution to the weak version of CCYBE provides a conformal Lie bialgebra structure. We describe all solutions to the CCYBE on the current Lie conformal algebra Cur(sl2(C)) and to the weak version of it.
AB - In 2008, Liberati [J. Algebra 319, 2295–2318 (2008)] defined what a conformal Lie bialgebra is and introduced the conformal classical Yang–Baxter equation (CCYBE). An L-invariant solution to the weak version of CCYBE provides a conformal Lie bialgebra structure. We describe all solutions to the CCYBE on the current Lie conformal algebra Cur(sl2(C)) and to the weak version of it.
UR - https://www.scopus.com/record/display.uri?eid=2-s2.0-85147179734&origin=inward&txGid=ea349c6afcc96d8fbfd7ebf9dee3c886
UR - https://www.mendeley.com/catalogue/49df1cd5-4bf7-388a-97ad-cfc9dd4a74ed/
U2 - 10.1063/5.0127927
DO - 10.1063/5.0127927
M3 - Article
VL - 64
JO - Journal of Mathematical Physics
JF - Journal of Mathematical Physics
SN - 0022-2488
IS - 1
M1 - 011704
ER -
ID: 56390272