Standard

A Spectral Criterion for Power-Law Convergence Rate in the Ergodic Theorem for and Actions. / Kachurovskii, A. G.; Podvigin, I. V.; Todikov, V. и др.

в: Siberian Mathematical Journal, Том 65, № 1, 01.2024, стр. 76-95.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

Kachurovskii, AG, Podvigin, IV, Todikov, V & Khakimbaev, AZ 2024, 'A Spectral Criterion for Power-Law Convergence Rate in the Ergodic Theorem for and Actions', Siberian Mathematical Journal, Том. 65, № 1, стр. 76-95. https://doi.org/10.1134/S0037446624010099

APA

Vancouver

Kachurovskii AG, Podvigin IV, Todikov V, Khakimbaev AZ. A Spectral Criterion for Power-Law Convergence Rate in the Ergodic Theorem for and Actions. Siberian Mathematical Journal. 2024 янв.;65(1):76-95. doi: 10.1134/S0037446624010099

Author

Kachurovskii, A. G. ; Podvigin, I. V. ; Todikov, V. и др. / A Spectral Criterion for Power-Law Convergence Rate in the Ergodic Theorem for and Actions. в: Siberian Mathematical Journal. 2024 ; Том 65, № 1. стр. 76-95.

BibTeX

@article{28c863eb3ca447779684e4a4a6addb5a,
title = "A Spectral Criterion for Power-Law Convergence Rate in the Ergodic Theorem for and Actions",
abstract = "We prove the equivalence of the power-law convergence rate in the -normof ergodic averages for and actions and the samepower-law estimate for the spectral measure of symmetric -dimensionalparallelepipeds: for the degrees that are roots of some special symmetricpolynomial in variables. Particularly, all possible rangeof power-law rates is covered for.",
keywords = "517.987, convergence rates in ergodic theorems, symmetric polynomial",
author = "Kachurovskii, {A. G.} and Podvigin, {I. V.} and V. Todikov and Khakimbaev, {A. Zh}",
note = "The work was carried out in the framework of the State Task to the Sobolev Institute of Mathematics (Project FWNF–2022–0004).",
year = "2024",
month = jan,
doi = "10.1134/S0037446624010099",
language = "English",
volume = "65",
pages = "76--95",
journal = "Siberian Mathematical Journal",
issn = "0037-4466",
publisher = "MAIK NAUKA/INTERPERIODICA/SPRINGER",
number = "1",

}

RIS

TY - JOUR

T1 - A Spectral Criterion for Power-Law Convergence Rate in the Ergodic Theorem for and Actions

AU - Kachurovskii, A. G.

AU - Podvigin, I. V.

AU - Todikov, V.

AU - Khakimbaev, A. Zh

N1 - The work was carried out in the framework of the State Task to the Sobolev Institute of Mathematics (Project FWNF–2022–0004).

PY - 2024/1

Y1 - 2024/1

N2 - We prove the equivalence of the power-law convergence rate in the -normof ergodic averages for and actions and the samepower-law estimate for the spectral measure of symmetric -dimensionalparallelepipeds: for the degrees that are roots of some special symmetricpolynomial in variables. Particularly, all possible rangeof power-law rates is covered for.

AB - We prove the equivalence of the power-law convergence rate in the -normof ergodic averages for and actions and the samepower-law estimate for the spectral measure of symmetric -dimensionalparallelepipeds: for the degrees that are roots of some special symmetricpolynomial in variables. Particularly, all possible rangeof power-law rates is covered for.

KW - 517.987

KW - convergence rates in ergodic theorems

KW - symmetric polynomial

UR - https://www.scopus.com/record/display.uri?eid=2-s2.0-85188348709&origin=inward&txGid=c3f4973da723f35182df965c2543ec32

UR - https://www.mendeley.com/catalogue/edf6154f-88b8-3314-9a27-457f5d88c511/

U2 - 10.1134/S0037446624010099

DO - 10.1134/S0037446624010099

M3 - Article

VL - 65

SP - 76

EP - 95

JO - Siberian Mathematical Journal

JF - Siberian Mathematical Journal

SN - 0037-4466

IS - 1

ER -

ID: 60478837