Research output: Contribution to journal › Article › peer-review
A Spectral Criterion for Power-Law Convergence Rate in the Ergodic Theorem for and Actions. / Kachurovskii, A. G.; Podvigin, I. V.; Todikov, V. et al.
In: Siberian Mathematical Journal, Vol. 65, No. 1, 01.2024, p. 76-95.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - A Spectral Criterion for Power-Law Convergence Rate in the Ergodic Theorem for and Actions
AU - Kachurovskii, A. G.
AU - Podvigin, I. V.
AU - Todikov, V.
AU - Khakimbaev, A. Zh
N1 - The work was carried out in the framework of the State Task to the Sobolev Institute of Mathematics (Project FWNF–2022–0004).
PY - 2024/1
Y1 - 2024/1
N2 - We prove the equivalence of the power-law convergence rate in the -normof ergodic averages for and actions and the samepower-law estimate for the spectral measure of symmetric -dimensionalparallelepipeds: for the degrees that are roots of some special symmetricpolynomial in variables. Particularly, all possible rangeof power-law rates is covered for.
AB - We prove the equivalence of the power-law convergence rate in the -normof ergodic averages for and actions and the samepower-law estimate for the spectral measure of symmetric -dimensionalparallelepipeds: for the degrees that are roots of some special symmetricpolynomial in variables. Particularly, all possible rangeof power-law rates is covered for.
KW - 517.987
KW - convergence rates in ergodic theorems
KW - symmetric polynomial
UR - https://www.scopus.com/record/display.uri?eid=2-s2.0-85188348709&origin=inward&txGid=c3f4973da723f35182df965c2543ec32
UR - https://www.mendeley.com/catalogue/edf6154f-88b8-3314-9a27-457f5d88c511/
U2 - 10.1134/S0037446624010099
DO - 10.1134/S0037446624010099
M3 - Article
VL - 65
SP - 76
EP - 95
JO - Siberian Mathematical Journal
JF - Siberian Mathematical Journal
SN - 0037-4466
IS - 1
ER -
ID: 60478837