Standard

Abelian Schur groups of odd order. / Ponomarenko, Ilia Nikolaevich; Ryabov, Grigory Konstantinovich.

в: Сибирские электронные математические известия, Том 15, 01.01.2018, стр. 397-411.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

Ponomarenko, IN & Ryabov, GK 2018, 'Abelian Schur groups of odd order', Сибирские электронные математические известия, Том. 15, стр. 397-411.

APA

Ponomarenko, I. N., & Ryabov, G. K. (2018). Abelian Schur groups of odd order. Сибирские электронные математические известия, 15, 397-411.

Vancouver

Ponomarenko IN, Ryabov GK. Abelian Schur groups of odd order. Сибирские электронные математические известия. 2018 янв. 1;15:397-411.

Author

Ponomarenko, Ilia Nikolaevich ; Ryabov, Grigory Konstantinovich. / Abelian Schur groups of odd order. в: Сибирские электронные математические известия. 2018 ; Том 15. стр. 397-411.

BibTeX

@article{1f4f2b20f9a749af9d8bd56bc4e513a0,
title = "Abelian Schur groups of odd order",
abstract = "A finite group G is called a Schur group if any Schur ring over G is associated in a natural way with a subgroup of Sym(G) that contains all right translations. It is proved that the group C3 × C3 × Cp is Schur for any prime p. Together with earlier results, this completes a classification of the abelian Schur groups of odd order.",
keywords = "Permutation groups, Schur groups, Schur rings",
author = "Ponomarenko, {Ilia Nikolaevich} and Ryabov, {Grigory Konstantinovich}",
year = "2018",
month = jan,
day = "1",
language = "English",
volume = "15",
pages = "397--411",
journal = "Сибирские электронные математические известия",
issn = "1813-3304",
publisher = "Sobolev Institute of Mathematics",

}

RIS

TY - JOUR

T1 - Abelian Schur groups of odd order

AU - Ponomarenko, Ilia Nikolaevich

AU - Ryabov, Grigory Konstantinovich

PY - 2018/1/1

Y1 - 2018/1/1

N2 - A finite group G is called a Schur group if any Schur ring over G is associated in a natural way with a subgroup of Sym(G) that contains all right translations. It is proved that the group C3 × C3 × Cp is Schur for any prime p. Together with earlier results, this completes a classification of the abelian Schur groups of odd order.

AB - A finite group G is called a Schur group if any Schur ring over G is associated in a natural way with a subgroup of Sym(G) that contains all right translations. It is proved that the group C3 × C3 × Cp is Schur for any prime p. Together with earlier results, this completes a classification of the abelian Schur groups of odd order.

KW - Permutation groups

KW - Schur groups

KW - Schur rings

UR - http://www.scopus.com/inward/record.url?scp=85058230424&partnerID=8YFLogxK

M3 - Article

AN - SCOPUS:85058230424

VL - 15

SP - 397

EP - 411

JO - Сибирские электронные математические известия

JF - Сибирские электронные математические известия

SN - 1813-3304

ER -

ID: 18200293