Research output: Contribution to journal › Article › peer-review
Abelian Schur groups of odd order. / Ponomarenko, Ilia Nikolaevich; Ryabov, Grigory Konstantinovich.
In: Сибирские электронные математические известия, Vol. 15, 01.01.2018, p. 397-411.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - Abelian Schur groups of odd order
AU - Ponomarenko, Ilia Nikolaevich
AU - Ryabov, Grigory Konstantinovich
PY - 2018/1/1
Y1 - 2018/1/1
N2 - A finite group G is called a Schur group if any Schur ring over G is associated in a natural way with a subgroup of Sym(G) that contains all right translations. It is proved that the group C3 × C3 × Cp is Schur for any prime p. Together with earlier results, this completes a classification of the abelian Schur groups of odd order.
AB - A finite group G is called a Schur group if any Schur ring over G is associated in a natural way with a subgroup of Sym(G) that contains all right translations. It is proved that the group C3 × C3 × Cp is Schur for any prime p. Together with earlier results, this completes a classification of the abelian Schur groups of odd order.
KW - Permutation groups
KW - Schur groups
KW - Schur rings
UR - http://www.scopus.com/inward/record.url?scp=85058230424&partnerID=8YFLogxK
M3 - Article
AN - SCOPUS:85058230424
VL - 15
SP - 397
EP - 411
JO - Сибирские электронные математические известия
JF - Сибирские электронные математические известия
SN - 1813-3304
ER -
ID: 18200293