Standard

Transparent silicon carbide/tunnel SiO2 passivation for c-Si solar cell front side: Enabling Jsc > 42 mA/cm2 and iVoc of 742 mV. / Pomaska, Manuel; Köhler, Malte; Procel Moya, Paul et al.

In: Progress in Photovoltaics: Research and Applications, Vol. 28, No. 4, 01.04.2020, p. 321-327.

Research output: Contribution to journalArticlepeer-review

Harvard

Pomaska, M, Köhler, M, Procel Moya, P, Zamchiy, A, Singh, A, Kim, DY, Isabella, O, Zeman, M, Li, S, Qiu, K, Eberst, A, Smirnov, V, Finger, F, Rau, U & Ding, K 2020, 'Transparent silicon carbide/tunnel SiO2 passivation for c-Si solar cell front side: Enabling Jsc > 42 mA/cm2 and iVoc of 742 mV', Progress in Photovoltaics: Research and Applications, vol. 28, no. 4, pp. 321-327. https://doi.org/10.1002/pip.3244

APA

Pomaska, M., Köhler, M., Procel Moya, P., Zamchiy, A., Singh, A., Kim, D. Y., Isabella, O., Zeman, M., Li, S., Qiu, K., Eberst, A., Smirnov, V., Finger, F., Rau, U., & Ding, K. (2020). Transparent silicon carbide/tunnel SiO2 passivation for c-Si solar cell front side: Enabling Jsc > 42 mA/cm2 and iVoc of 742 mV. Progress in Photovoltaics: Research and Applications, 28(4), 321-327. https://doi.org/10.1002/pip.3244

Vancouver

Pomaska M, Köhler M, Procel Moya P, Zamchiy A, Singh A, Kim DY et al. Transparent silicon carbide/tunnel SiO2 passivation for c-Si solar cell front side: Enabling Jsc > 42 mA/cm2 and iVoc of 742 mV. Progress in Photovoltaics: Research and Applications. 2020 Apr 1;28(4):321-327. doi: 10.1002/pip.3244

Author

Pomaska, Manuel ; Köhler, Malte ; Procel Moya, Paul et al. / Transparent silicon carbide/tunnel SiO2 passivation for c-Si solar cell front side: Enabling Jsc > 42 mA/cm2 and iVoc of 742 mV. In: Progress in Photovoltaics: Research and Applications. 2020 ; Vol. 28, No. 4. pp. 321-327.

BibTeX

@article{9133613644514cac893aaaf1152c80cc,
title = "Transparent silicon carbide/tunnel SiO2 passivation for c-Si solar cell front side: Enabling Jsc > 42 mA/cm2 and iVoc of 742 mV",
abstract = "N-type microcrystalline silicon carbide (μc-SiC:H(n)) is a wide bandgap material that is very promising for the use on the front side of crystalline silicon (c-Si) solar cells. It offers a high optical transparency and a suitable refractive index that reduces parasitic absorption and reflection losses, respectively. In this work, we investigate the potential of hot wire chemical vapor deposition (HWCVD)–grown μc-SiC:H(n) for c-Si solar cells with interdigitated back contacts (IBC). We demonstrate outstanding passivation quality of μc-SiC:H(n) on tunnel oxide (SiO2)–passivated c-Si with an implied open-circuit voltage of 742 mV and a saturation current density of 3.6 fA/cm2. This excellent passivation quality is achieved directly after the HWCVD deposition of μc-SiC:H(n) at 250°C heater temperature without any further treatments like recrystallization or hydrogenation. Additionally, we developed magnesium fluoride (MgF2)/silicon nitride (SiNx:H)/silicon carbide antireflection coatings that reduce optical losses on the front side to only 0.47 mA/cm2 with MgF2/SiNx:H/μc-SiC:H(n) and 0.62 mA/cm2 with MgF2/μc-SiC:H(n). Finally, calculations with Sentaurus TCAD simulation using MgF2/μc-SiC:H(n)/SiO2/c-Si as front side layer stack in an IBC solar cell reveal a short-circuit current density of 42.2 mA/cm2, an open-circuit voltage of 738 mV, a fill factor of 85.2% and a maximum power conversion efficiency of 26.6%.",
keywords = "antireflecting coating, excellent passivation, heterojunction, hot wire CVD, lean process, refractive index, silicon carbide, tunnel oxide, CONTACT",
author = "Manuel Pomaska and Malte K{\"o}hler and {Procel Moya}, Paul and Alexandr Zamchiy and Aryak Singh and Kim, {Do Yun} and Olindo Isabella and Miro Zeman and Shenghao Li and Kaifu Qiu and Alexander Eberst and Vladimir Smirnov and Friedhelm Finger and Uwe Rau and Kaining Ding",
note = "Publisher Copyright: {\textcopyright} 2020 The Authors. Progress in Photovoltaics: Research and Applications published by John Wiley & Sons Ltd. Copyright: Copyright 2020 Elsevier B.V., All rights reserved.",
year = "2020",
month = apr,
day = "1",
doi = "10.1002/pip.3244",
language = "English",
volume = "28",
pages = "321--327",
journal = "Progress in Photovoltaics: Research and Applications",
issn = "1062-7995",
publisher = "John Wiley and Sons Ltd",
number = "4",

}

RIS

TY - JOUR

T1 - Transparent silicon carbide/tunnel SiO2 passivation for c-Si solar cell front side: Enabling Jsc > 42 mA/cm2 and iVoc of 742 mV

AU - Pomaska, Manuel

AU - Köhler, Malte

AU - Procel Moya, Paul

AU - Zamchiy, Alexandr

AU - Singh, Aryak

AU - Kim, Do Yun

AU - Isabella, Olindo

AU - Zeman, Miro

AU - Li, Shenghao

AU - Qiu, Kaifu

AU - Eberst, Alexander

AU - Smirnov, Vladimir

AU - Finger, Friedhelm

AU - Rau, Uwe

AU - Ding, Kaining

N1 - Publisher Copyright: © 2020 The Authors. Progress in Photovoltaics: Research and Applications published by John Wiley & Sons Ltd. Copyright: Copyright 2020 Elsevier B.V., All rights reserved.

PY - 2020/4/1

Y1 - 2020/4/1

N2 - N-type microcrystalline silicon carbide (μc-SiC:H(n)) is a wide bandgap material that is very promising for the use on the front side of crystalline silicon (c-Si) solar cells. It offers a high optical transparency and a suitable refractive index that reduces parasitic absorption and reflection losses, respectively. In this work, we investigate the potential of hot wire chemical vapor deposition (HWCVD)–grown μc-SiC:H(n) for c-Si solar cells with interdigitated back contacts (IBC). We demonstrate outstanding passivation quality of μc-SiC:H(n) on tunnel oxide (SiO2)–passivated c-Si with an implied open-circuit voltage of 742 mV and a saturation current density of 3.6 fA/cm2. This excellent passivation quality is achieved directly after the HWCVD deposition of μc-SiC:H(n) at 250°C heater temperature without any further treatments like recrystallization or hydrogenation. Additionally, we developed magnesium fluoride (MgF2)/silicon nitride (SiNx:H)/silicon carbide antireflection coatings that reduce optical losses on the front side to only 0.47 mA/cm2 with MgF2/SiNx:H/μc-SiC:H(n) and 0.62 mA/cm2 with MgF2/μc-SiC:H(n). Finally, calculations with Sentaurus TCAD simulation using MgF2/μc-SiC:H(n)/SiO2/c-Si as front side layer stack in an IBC solar cell reveal a short-circuit current density of 42.2 mA/cm2, an open-circuit voltage of 738 mV, a fill factor of 85.2% and a maximum power conversion efficiency of 26.6%.

AB - N-type microcrystalline silicon carbide (μc-SiC:H(n)) is a wide bandgap material that is very promising for the use on the front side of crystalline silicon (c-Si) solar cells. It offers a high optical transparency and a suitable refractive index that reduces parasitic absorption and reflection losses, respectively. In this work, we investigate the potential of hot wire chemical vapor deposition (HWCVD)–grown μc-SiC:H(n) for c-Si solar cells with interdigitated back contacts (IBC). We demonstrate outstanding passivation quality of μc-SiC:H(n) on tunnel oxide (SiO2)–passivated c-Si with an implied open-circuit voltage of 742 mV and a saturation current density of 3.6 fA/cm2. This excellent passivation quality is achieved directly after the HWCVD deposition of μc-SiC:H(n) at 250°C heater temperature without any further treatments like recrystallization or hydrogenation. Additionally, we developed magnesium fluoride (MgF2)/silicon nitride (SiNx:H)/silicon carbide antireflection coatings that reduce optical losses on the front side to only 0.47 mA/cm2 with MgF2/SiNx:H/μc-SiC:H(n) and 0.62 mA/cm2 with MgF2/μc-SiC:H(n). Finally, calculations with Sentaurus TCAD simulation using MgF2/μc-SiC:H(n)/SiO2/c-Si as front side layer stack in an IBC solar cell reveal a short-circuit current density of 42.2 mA/cm2, an open-circuit voltage of 738 mV, a fill factor of 85.2% and a maximum power conversion efficiency of 26.6%.

KW - antireflecting coating

KW - excellent passivation

KW - heterojunction

KW - hot wire CVD

KW - lean process

KW - refractive index

KW - silicon carbide

KW - tunnel oxide

KW - CONTACT

UR - http://www.scopus.com/inward/record.url?scp=85077990859&partnerID=8YFLogxK

U2 - 10.1002/pip.3244

DO - 10.1002/pip.3244

M3 - Article

AN - SCOPUS:85077990859

VL - 28

SP - 321

EP - 327

JO - Progress in Photovoltaics: Research and Applications

JF - Progress in Photovoltaics: Research and Applications

SN - 1062-7995

IS - 4

ER -

ID: 23209662