Research output: Contribution to journal › Article › peer-review
Study of Drell-Yan dimuon production in proton-lead collisions at √sNN = 8.16 TeV. / The CMS collaboration.
In: Journal of High Energy Physics, Vol. 2021, No. 5, 182, 05.2021.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - Study of Drell-Yan dimuon production in proton-lead collisions at √sNN = 8.16 TeV
AU - The CMS collaboration
AU - Sirunyan, A. M.
AU - Tumasyan, A.
AU - Adam, W.
AU - Ambrogi, F.
AU - Bergauer, T.
AU - Dragicevic, M.
AU - Erö, J.
AU - Escalante Del Valle, A.
AU - Frühwirth, R.
AU - Jeitler, M.
AU - Krammer, N.
AU - Lechner, L.
AU - Liko, D.
AU - Madlener, T.
AU - Mikulec, I.
AU - Pitters, F. M.
AU - Rad, N.
AU - Schieck, J.
AU - Schöfbeck, R.
AU - Spanring, M.
AU - Templ, S.
AU - Waltenberger, W.
AU - Wulz, C. E.
AU - Zarucki, M.
AU - Chekhovsky, V.
AU - Litomin, A.
AU - Makarenko, V.
AU - Suarez Gonzalez, J.
AU - Darwish, M. R.
AU - De Wolf, E. A.
AU - Di Croce, D.
AU - Janssen, X.
AU - Kello, T.
AU - Lelek, A.
AU - Pieters, M.
AU - Rejeb Sfar, H.
AU - Van Haevermaet, H.
AU - Van Mechelen, P.
AU - Van Putte, S.
AU - Van Remortel, N.
AU - Blekman, F.
AU - Bols, E. S.
AU - Chhibra, S. S.
AU - D’Hondt, J.
AU - De Clercq, J.
AU - Blinov, V.
AU - Dimova, T.
AU - Kardapoltsev, L.
AU - Ovtin, I.
AU - Skovpen, Y.
N1 - We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centres and personnel of the Worldwide LHC Computing Grid and other centres for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC, the CMS detector, and the supporting computing infrastructure provided by the following funding agencies: BMBWF and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, FAPERGS, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RIF (Cyprus); SENESCYT (Ecuador); MoER, ERC PUT and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); NKFIA (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); MES (Latvia); LAS (Lithuania); MOE and UM (Malaysia); BUAP, CINVES- TAV, CONACYT, LNS, SEP, and UASLP-FAI (Mexico); MOS (Montenegro); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS, RFBR, and NRC KI (Russia); MESTD (Serbia); SEIDI, CPAN, PCTI, and FEDER (Spain); MOSTR (Sri Lanka); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR, and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU (Ukraine); STFC (United Kingdom); DOE and NSF (U.S.A.). Individuals have received support from the Marie-Curie programme and the European Research Council and Horizon 2020 Grant, contract Nos. 675440, 724704, 752730, and 765710 (European Union); the Leventis Foundation; the Alfred P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation a la Recherche dans l'Industrie et dans l'Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWTBelgium); the F.R.S.-FNRS and FWO (Belgium) under the "Excellence of Science -EOS" -be.h project n. 30820817; the Beijing Municipal Science & Technology Commission, No. Z191100007219010; the Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; the Deutsche Forschungsgemeinschaft (DFG), under Germany's Excellence Strategy -EXC 2121 "Quantum Universe" -390833306, and under project number 400140256 -GRK2497; the Lendulet ("Momentum") Programme and the Janos Bolyai Research Scholarship of the Hungarian Academy of Sciences, the New National Excellence Program UNKP, the NKFIA research grants 123842, 123959, 124845, 124850, 125105, 128713, 128786, and 129058 (Hungary); the Council of Science and Industrial Research, India; the Ministry of Science and Higher Education and the National Science Center, contracts Opus 2014/15/B/ST2/03998 and 2015/19/B/ST2/02861 (Poland); the National Priorities Research Program by Qatar National Research Fund; the Ministry of Science and Higher Education, project no. r 0723-2020-0041 (Russia); the Programa Estatal de Fomento de la Investigacion Cientifica y Tecnica de Excelencia Maria de Maeztu, grant MDM-2015-0509 and the Programa Severo Ochoa del Principado de Asturias; the Thalis and Aristeia programmes cofinanced by EU-ESF and the Greek NSRF; the Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chulalongkorn University and the Chulalongkorn Academic into Its 2nd Century Project Advancement Project (Thailand); the Kavli Foundation; the Nvidia Corporation; the SuperMicro Corporation; the Welch Foundation, contract C-1845; and the Weston Havens Foundation (U.S.A.). Publisher Copyright: © 2021, The Author(s).
PY - 2021/5
Y1 - 2021/5
N2 - Differential cross sections for the Drell-Yan process, including Z boson production, using the dimuon decay channel are measured in proton-lead (pPb) collisions at a nucleon-nucleon centre-of-mass energy of 8.16 TeV. A data sample recorded with the CMS detector at the LHC is used, corresponding to an integrated luminosity of 173 nb−1. The differential cross section as a function of the dimuon mass is measured in the range 15–600 GeV, for the first time in proton-nucleus collisions. It is also reported as a function of dimuon rapidity over the mass ranges 15–60 GeV and 60–120 GeV, and ratios for the p-going over the Pb-going beam directions are built. In both mass ranges, the differential cross sections as functions of the dimuon transverse momentum pT and of a geometric variable ϕ* are measured, where ϕ* highly correlates with pT but is determined with higher precision. In the Z mass region, the rapidity dependence of the data indicate a modification of the distribution of partons within a lead nucleus as compared to the proton case. The data are more precise than predictions based upon current models of parton distributions.
AB - Differential cross sections for the Drell-Yan process, including Z boson production, using the dimuon decay channel are measured in proton-lead (pPb) collisions at a nucleon-nucleon centre-of-mass energy of 8.16 TeV. A data sample recorded with the CMS detector at the LHC is used, corresponding to an integrated luminosity of 173 nb−1. The differential cross section as a function of the dimuon mass is measured in the range 15–600 GeV, for the first time in proton-nucleus collisions. It is also reported as a function of dimuon rapidity over the mass ranges 15–60 GeV and 60–120 GeV, and ratios for the p-going over the Pb-going beam directions are built. In both mass ranges, the differential cross sections as functions of the dimuon transverse momentum pT and of a geometric variable ϕ* are measured, where ϕ* highly correlates with pT but is determined with higher precision. In the Z mass region, the rapidity dependence of the data indicate a modification of the distribution of partons within a lead nucleus as compared to the proton case. The data are more precise than predictions based upon current models of parton distributions.
KW - Hadron-Hadron scattering (experiments)
KW - Relativistic heavy ion physics
UR - http://www.scopus.com/inward/record.url?scp=85107870935&partnerID=8YFLogxK
U2 - 10.1007/JHEP05(2021)182
DO - 10.1007/JHEP05(2021)182
M3 - Article
AN - SCOPUS:85107870935
VL - 2021
JO - Journal of High Energy Physics
JF - Journal of High Energy Physics
SN - 1029-8479
IS - 5
M1 - 182
ER -
ID: 28876975