Research output: Contribution to journal › Article › peer-review
Structure of diamond films grown using high-speed flow of a thermally activated CH4-H2 gas mixture. / Fedoseeva, Yu V.; Gorodetskiy, D. V.; Baskakova, K. I. et al.
In: Materials, Vol. 13, No. 1, 219, 04.01.2020.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - Structure of diamond films grown using high-speed flow of a thermally activated CH4-H2 gas mixture
AU - Fedoseeva, Yu V.
AU - Gorodetskiy, D. V.
AU - Baskakova, K. I.
AU - Asanov, I. P.
AU - Bulusheva, L. G.
AU - Makarova, A. A.
AU - Yudin, I. B.
AU - Plotnikov, M. Yu
AU - Emelyanov, A. A.
AU - Rebrov, A. K.
AU - Okotrub, A. V.
N1 - Publisher Copyright: © 2020 by the authors. Copyright: Copyright 2020 Elsevier B.V., All rights reserved.
PY - 2020/1/4
Y1 - 2020/1/4
N2 - Diamond films are advanced engineering materials for various industrial applications requiring a coating material with extremely high thermal conductivity and low electrical conductivity. An approach for the synthesis of diamond films via high-speed jet deposition of thermally activated gas has been applied. In this method, spatially separated high-speed flows of methane and hydrogen were thermally activated, and methyl and hydrogen radicals were deposited on heated molybdenum substrates. The morphology and structure of three diamond films were studied, which were synthesized at a heating power of 900, 1700, or 1800 W, methane flow rate of 10 or 30 sccm, hydrogen flow rate of 1500 or 3500 sccm, and duration of the synthesis from 1.5 to 3 h.The morphology and electronic state of the carbon on the surface and in the bulk of the obtained films were analyzed by scanning electron microscopy, Raman scattering, X-ray photoelectron, and near-edge X-ray absorption fine structure spectroscopies. The diamond micro-crystals with a thick oxidized amorphous sp2-carbon coating were grown at a heating power of 900 W and a hydrogen flow rate of 1500 sccm. The quality of the crystals was improved, and the growth rate of the diamond film was increased seven times when the heating power was 1700-1800Wand the methane and hydrogen flow rates were 30 and 3500 sccm, respectively. Defective octahedral diamond crystals of 30 μm in size with a thin sp2-carbon surface layer were synthesized on a Mo substrate heated at 1273 K for 1.5 h. When the synthesis duration was doubled, and the substrate temperature was decreased to 1073 K, the denser film with rhombic-dodecahedron diamond crystals was grown. In this case, the thinnest hydrogenated sp2-carbon coating was detected on the surface of the diamond crystals.
AB - Diamond films are advanced engineering materials for various industrial applications requiring a coating material with extremely high thermal conductivity and low electrical conductivity. An approach for the synthesis of diamond films via high-speed jet deposition of thermally activated gas has been applied. In this method, spatially separated high-speed flows of methane and hydrogen were thermally activated, and methyl and hydrogen radicals were deposited on heated molybdenum substrates. The morphology and structure of three diamond films were studied, which were synthesized at a heating power of 900, 1700, or 1800 W, methane flow rate of 10 or 30 sccm, hydrogen flow rate of 1500 or 3500 sccm, and duration of the synthesis from 1.5 to 3 h.The morphology and electronic state of the carbon on the surface and in the bulk of the obtained films were analyzed by scanning electron microscopy, Raman scattering, X-ray photoelectron, and near-edge X-ray absorption fine structure spectroscopies. The diamond micro-crystals with a thick oxidized amorphous sp2-carbon coating were grown at a heating power of 900 W and a hydrogen flow rate of 1500 sccm. The quality of the crystals was improved, and the growth rate of the diamond film was increased seven times when the heating power was 1700-1800Wand the methane and hydrogen flow rates were 30 and 3500 sccm, respectively. Defective octahedral diamond crystals of 30 μm in size with a thin sp2-carbon surface layer were synthesized on a Mo substrate heated at 1273 K for 1.5 h. When the synthesis duration was doubled, and the substrate temperature was decreased to 1073 K, the denser film with rhombic-dodecahedron diamond crystals was grown. In this case, the thinnest hydrogenated sp2-carbon coating was detected on the surface of the diamond crystals.
KW - Diamond film
KW - High-speed gas flow
KW - Jet-deposition
KW - NEXAFS
KW - Surface coating
KW - XPS
KW - diamond film
KW - THIN-FILMS
KW - jet-deposition
KW - DEPOSITION
KW - PHOTOELECTRON
KW - X-RAY-ABSORPTION
KW - MECHANICAL-PROPERTIES
KW - CVD
KW - HYDROGEN
KW - surface coating
KW - RAMAN-SPECTRUM
KW - SPECTROSCOPY
KW - high-speed gas flow
KW - ELECTRONIC-STRUCTURE
UR - http://www.scopus.com/inward/record.url?scp=85079767673&partnerID=8YFLogxK
U2 - 10.3390/ma13010219
DO - 10.3390/ma13010219
M3 - Article
C2 - 31947948
AN - SCOPUS:85079767673
VL - 13
JO - Materials
JF - Materials
SN - 1996-1944
IS - 1
M1 - 219
ER -
ID: 23615992