Standard

Search for Wγ resonances in proton-proton collisions at s=13 TeV using hadronic decays of Lorentz-boosted W bosons. / The CMS collaboration.

In: Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, Vol. 826, 136888, 10.03.2022.

Research output: Contribution to journalArticlepeer-review

Harvard

The CMS collaboration 2022, 'Search for Wγ resonances in proton-proton collisions at s=13 TeV using hadronic decays of Lorentz-boosted W bosons', Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, vol. 826, 136888. https://doi.org/10.1016/j.physletb.2022.136888

APA

The CMS collaboration (2022). Search for Wγ resonances in proton-proton collisions at s=13 TeV using hadronic decays of Lorentz-boosted W bosons. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 826, [136888]. https://doi.org/10.1016/j.physletb.2022.136888

Vancouver

The CMS collaboration. Search for Wγ resonances in proton-proton collisions at s=13 TeV using hadronic decays of Lorentz-boosted W bosons. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics. 2022 Mar 10;826:136888. doi: 10.1016/j.physletb.2022.136888

Author

The CMS collaboration. / Search for Wγ resonances in proton-proton collisions at s=13 TeV using hadronic decays of Lorentz-boosted W bosons. In: Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics. 2022 ; Vol. 826.

BibTeX

@article{1890dca3fa1440d4a9b446d03e536016,
title = "Search for Wγ resonances in proton-proton collisions at s=13 TeV using hadronic decays of Lorentz-boosted W bosons",
abstract = "A search for Wγ resonances in the mass range between 0.7 and 6.0 TeV is presented. The W boson is reconstructed via its hadronic decays, with the final-state products forming a single large-radius jet, owing to a high Lorentz boost of the W boson. The search is based on proton-proton collision data at s=13 TeV, corresponding to an integrated luminosity of 137 fb−1, collected with the CMS detector at the LHC in 2016–2018. The Wγ mass spectrum is parameterized with a smoothly falling background function and examined for the presence of resonance-like signals. No significant excess above the predicted background is observed. Model-specific upper limits at 95% confidence level on the product of the cross section and branching fraction to the Wγ channel are set. Limits for narrow resonances and for resonances with an intrinsic width equal to 5% of their mass, for spin-0 and spin-1 hypotheses, range between 0.17 fb at 6.0 TeV and 55 fb at 0.7 TeV. These are the most restrictive limits to date on the existence of such resonances over a large range of probed masses. In specific heavy scalar (vector) triplet benchmark models, narrow resonances with masses between 0.75 (1.15) and 1.40 (1.36) TeV are excluded for a range of model parameters. Model-independent limits on the product of the cross section, signal acceptance, and branching fraction to the Wγ channel are set for minimum Wγ mass thresholds between 1.5 and 8.0 TeV.",
keywords = "BSM particles, CMS, Wgamma resonances",
author = "{The CMS collaboration} and A. Tumasyan and W. Adam and Andrejkovic, {J. W.} and T. Bergauer and S. Chatterjee and M. Dragicevic and {Escalante Del Valle}, A. and R. Fr{\"u}hwirth and M. Jeitler and N. Krammer and L. Lechner and D. Liko and I. Mikulec and Pitters, {F. M.} and J. Schieck and R. Sch{\"o}fbeck and M. Spanring and S. Templ and W. Waltenberger and Wulz, {C. E.} and V. Chekhovsky and A. Litomin and V. Makarenko and Darwish, {M. R.} and {De Wolf}, {E. A.} and X. Janssen and T. Kello and A. Lelek and {Rejeb Sfar}, H. and {Van Mechelen}, P. and {Van Putte}, S. and {Van Remortel}, N. and F. Blekman and Bols, {E. S.} and J. D'Hondt and {De Clercq}, J. and M. Delcourt and S. Lowette and S. Moortgat and A. Morton and D. M{\"u}ller and Sahasransu, {A. R.} and S. Tavernier and {Van Doninck}, W. and {Van Mulders}, P. and V. Blinov and T. Dimova and L. Kardapoltsev and I. Ovtin and Y. Skovpen",
note = "Funding Information: We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid and other centers for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC, the CMS detector, and the supporting computing infrastructure provided by the following funding agencies: BMBWF and FWF (Austria); FNRS and FWO (Belgium); CNPq , CAPES , FAPERJ , FAPERGS , and FAPESP (Brazil); MES (Bulgaria); CERN ; CAS , MOST , and NSFC (China); MINCIENCIAS (Colombia); MSES and CSF (Croatia); RIF (Cyprus); SENESCYT (Ecuador); MoER , ERC PUT and ERDF (Estonia); Academy of Finland , MEC , and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF , DFG , and HGF (Germany); GSRT (Greece); NKFIA (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); MES (Latvia); LAS (Lithuania); MOE and UM (Malaysia); BUAP , CINVESTAV , CONACYT , LNS , SEP , and UASLP-FAI (Mexico); MOS (Montenegro); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON , ROSATOM , RAS , RFBR , and NRC KI (Russia); MESTD (Serbia); SEIDI , CPAN , PCTI , and FEDER (Spain); MoSTR (Sri Lanka); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter , IPST , STAR , and NSTDA (Thailand); T{\"U}BITAK and TAEK (Turkey); NASU (Ukraine); STFC (United Kingdom); DOE and NSF (USA). Funding Information: Individuals have received support from the Marie-Curie program and the European Research Council and Horizon 2020 Grant, contract Nos. 675440 , 724704 , 752730 , 765710 and 824093 ( European Union ); the Leventis Foundation ; the Alfred P. Sloan Foundation ; the Alexander von Humboldt Foundation ; the Belgian Federal Science Policy Office ; the Fonds pour la Formation {\`a} la Recherche dans l'Industrie et dans l'Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the F.R.S. - FNRS and FWO (Belgium) under the “Excellence of Science – EOS” – be.h project n. 30820817 ; the Beijing Municipal Science & Technology Commission , No. Z191100007219010 ; The Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; the Deutsche Forschungsgemeinschaft (DFG), under Germany's Excellence Strategy – EXC 2121 “Quantum Universe” – 390833306 , and under project number 400140256 - GRK2497 ; the Lend{\"u}let (“Momentum”) Program and the J{\'a}nos Bolyai Research Scholarship of the Hungarian Academy of Sciences , the New National Excellence Program {\'U}NKP, the NKFIA research grants 123842 , 123959 , 124845 , 124850 , 125105 , 128713 , 128786 , and 129058 (Hungary); the Council of Science and Industrial Research , India; the Latvian Council of Science ; the Ministry of Science and Higher Education and the National Science Center , contracts Opus 2014/15/B/ST2/03998 and 2015/19/B/ST2/02861 (Poland); the National Priorities Research Program by Qatar National Research Fund ; the Ministry of Science and Higher Education , project no. 0723-2020-0041 (Russia); the Programa Estatal de Fomento de la Investigaci{\'o}n Cient{\'i}fica y T{\'e}cnica de Excelencia Mar{\'i}a de Maeztu , grant MDM-2015-0509 and the Programa Severo Ochoa del Principado de Asturias; the Thalis and Aristeia programs cofinanced by EU-ESF and the Greek NSRF ; the Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chulalongkorn University and the Chulalongkorn Academic into Its 2nd Century Project Advancement Project (Thailand); the Kavli Foundation ; the Nvidia Corporation; the SuperMicro Corporation ; the Welch Foundation , contract C-1845 ; and the Weston Havens Foundation (USA). Funding Information: We also acknowledge the following institutions: Institut f{\"u}r Hochenergiephysik , Wien; Inter University Institute For High Energies , Brussel; Universit{\'e} Catholique de Louvain , Louvain-la-Neuve; S{\~a}o Paulo Research and Analysis Center , S{\~a}o Paulo; Universidade do Estado do Rio de Janeiro , Rio de Janeiro; Institute of High Energy Physics of the Chinese Academy of Sciences, Beijing; National Institute of Chemical Physics and Biophysics , Tallinn; Helsinki Institute of Physics , Helsinki; Institut de recherche sur les lois fondamentales de l'Univers , CEA, Universit{\'e} Paris-Saclay , Gif-sur-Yvette; Institut national de physique nucl{\'e}aire et de physique des particules , IN2P3 , Villeurbanne; Institut Pluridisciplinaire Hubert Curien (IPHC), Strasbourg; Laboratoire Leprince-Ringuet, CNRS/IN2P3, Ecole Polytechnique, Institut Polytechnique de Paris , Palaiseau; Deutsches Elektronen-Synchrotron , Hamburg; Karlsruher Institut f{\"u}r Technologie , Karlsruhe; RWTH Aachen University , Aachen; University of Io{\'a}nnina , Io{\'a}nnina; Wigner Research Centre for Physics , Budapest; Tata Institute of Fundamental Research , Mumbai; INFN CNAF, Bologna; INFN Sezione di Bari, Universit{\`a} di Bari, Politecnico di Bari, Bari; INFN Sezione di Pisa, Universit{\`a} di Pisa , Scuola Normale Superiore di Pisa , Pisa; INFN Sezione di Roma, Sapienza Universit{\`a} di Roma , Rome; Laboratori Nazionali di Legnaro , Legnaro; Kyungpook National University , Daegu; National Centre for Physics , Quaid-i-Azam University , Islamabad; National Centre for Nuclear Research , Swierk; Laborat{\'o}rio de Instrumenta{\c c}{\~a}o e F{\'i}sica Experimental de Part{\'i}culas , Lisboa; Institute for High Energy Physics of National Research Centre {\textquoteleft}Kurchatov Institute{\textquoteright} , Protvino; Institute for Nuclear Research (INR) of the Russian Academy of Sciences , Troitsk; Institute for Theoretical and Experimental Physics named by A.I. Alikhanov of NRC {\textquoteleft}Kurchatov Institute{\textquoteright} , Moscow; Joint Institute for Nuclear Research , Dubna; Korea Institute of Science and Technology Information (KISTI), Daejeon; Centro de Investigaciones Energ{\'e}ticas, Medioambientales y Tecnol{\'o}gicas (CIEMAT), Madrid; Instituto de F{\'i}sica de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander; Port d'Informaci{\'o} Cient{\'i}fica , Bellaterra; CERN, European Organization for Nuclear Research , Geneva; CSCS - Swiss National Supercomputing Centre , Lugano; National Center for High-performance Computing (NCHC), Tainan City; Middle East Technical University , Physics Department, Ankara; National Scientific Center, Kharkov Institute of Physics and Technology , Kharkov; GridPP, Brunel University , Uxbridge; GridPP, Imperial College London ; GridPP, Queen Mary University of London , London; GridPP, Royal Holloway, University of London , London; GridPP, Rutherford Appleton Laboratory , Didcot; GridPP, University of Bristol , Bristol; GridPP, University of Glasgow , Glasgow; GridPP, University of Oxford , Oxford; California Institute of Technology , Pasadena; Fermi National Accelerator Laboratory , Batavia; Massachusetts Institute of Technology , Cambridge; National Energy Research Scientific Computing Center (NERSC), a U.S. Department of Energy Office of Science User Facility, Berkeley; Pittsburgh Supercomputing Center (PSC), Pittsburgh; Purdue University , West Lafayette; San Diego Supercomputer Center (SDSC), La Jolla; Texas Advanced Computing Center (TACC), Austin; University of California, San Diego , La Jolla; University of Colorado Boulder , Boulder; University of Florida , Gainesville; University of Nebraska-Lincoln , Lincoln; University of Wisconsin - Madison, Madison; Vanderbilt University , Nashville. Publisher Copyright: {\textcopyright} 2022 The Author(s)",
year = "2022",
month = mar,
day = "10",
doi = "10.1016/j.physletb.2022.136888",
language = "English",
volume = "826",
journal = "Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics",
issn = "0370-2693",
publisher = "Elsevier",

}

RIS

TY - JOUR

T1 - Search for Wγ resonances in proton-proton collisions at s=13 TeV using hadronic decays of Lorentz-boosted W bosons

AU - The CMS collaboration

AU - Tumasyan, A.

AU - Adam, W.

AU - Andrejkovic, J. W.

AU - Bergauer, T.

AU - Chatterjee, S.

AU - Dragicevic, M.

AU - Escalante Del Valle, A.

AU - Frühwirth, R.

AU - Jeitler, M.

AU - Krammer, N.

AU - Lechner, L.

AU - Liko, D.

AU - Mikulec, I.

AU - Pitters, F. M.

AU - Schieck, J.

AU - Schöfbeck, R.

AU - Spanring, M.

AU - Templ, S.

AU - Waltenberger, W.

AU - Wulz, C. E.

AU - Chekhovsky, V.

AU - Litomin, A.

AU - Makarenko, V.

AU - Darwish, M. R.

AU - De Wolf, E. A.

AU - Janssen, X.

AU - Kello, T.

AU - Lelek, A.

AU - Rejeb Sfar, H.

AU - Van Mechelen, P.

AU - Van Putte, S.

AU - Van Remortel, N.

AU - Blekman, F.

AU - Bols, E. S.

AU - D'Hondt, J.

AU - De Clercq, J.

AU - Delcourt, M.

AU - Lowette, S.

AU - Moortgat, S.

AU - Morton, A.

AU - Müller, D.

AU - Sahasransu, A. R.

AU - Tavernier, S.

AU - Van Doninck, W.

AU - Van Mulders, P.

AU - Blinov, V.

AU - Dimova, T.

AU - Kardapoltsev, L.

AU - Ovtin, I.

AU - Skovpen, Y.

N1 - Funding Information: We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid and other centers for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC, the CMS detector, and the supporting computing infrastructure provided by the following funding agencies: BMBWF and FWF (Austria); FNRS and FWO (Belgium); CNPq , CAPES , FAPERJ , FAPERGS , and FAPESP (Brazil); MES (Bulgaria); CERN ; CAS , MOST , and NSFC (China); MINCIENCIAS (Colombia); MSES and CSF (Croatia); RIF (Cyprus); SENESCYT (Ecuador); MoER , ERC PUT and ERDF (Estonia); Academy of Finland , MEC , and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF , DFG , and HGF (Germany); GSRT (Greece); NKFIA (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); MES (Latvia); LAS (Lithuania); MOE and UM (Malaysia); BUAP , CINVESTAV , CONACYT , LNS , SEP , and UASLP-FAI (Mexico); MOS (Montenegro); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON , ROSATOM , RAS , RFBR , and NRC KI (Russia); MESTD (Serbia); SEIDI , CPAN , PCTI , and FEDER (Spain); MoSTR (Sri Lanka); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter , IPST , STAR , and NSTDA (Thailand); TÜBITAK and TAEK (Turkey); NASU (Ukraine); STFC (United Kingdom); DOE and NSF (USA). Funding Information: Individuals have received support from the Marie-Curie program and the European Research Council and Horizon 2020 Grant, contract Nos. 675440 , 724704 , 752730 , 765710 and 824093 ( European Union ); the Leventis Foundation ; the Alfred P. Sloan Foundation ; the Alexander von Humboldt Foundation ; the Belgian Federal Science Policy Office ; the Fonds pour la Formation à la Recherche dans l'Industrie et dans l'Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the F.R.S. - FNRS and FWO (Belgium) under the “Excellence of Science – EOS” – be.h project n. 30820817 ; the Beijing Municipal Science & Technology Commission , No. Z191100007219010 ; The Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; the Deutsche Forschungsgemeinschaft (DFG), under Germany's Excellence Strategy – EXC 2121 “Quantum Universe” – 390833306 , and under project number 400140256 - GRK2497 ; the Lendület (“Momentum”) Program and the János Bolyai Research Scholarship of the Hungarian Academy of Sciences , the New National Excellence Program ÚNKP, the NKFIA research grants 123842 , 123959 , 124845 , 124850 , 125105 , 128713 , 128786 , and 129058 (Hungary); the Council of Science and Industrial Research , India; the Latvian Council of Science ; the Ministry of Science and Higher Education and the National Science Center , contracts Opus 2014/15/B/ST2/03998 and 2015/19/B/ST2/02861 (Poland); the National Priorities Research Program by Qatar National Research Fund ; the Ministry of Science and Higher Education , project no. 0723-2020-0041 (Russia); the Programa Estatal de Fomento de la Investigación Científica y Técnica de Excelencia María de Maeztu , grant MDM-2015-0509 and the Programa Severo Ochoa del Principado de Asturias; the Thalis and Aristeia programs cofinanced by EU-ESF and the Greek NSRF ; the Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chulalongkorn University and the Chulalongkorn Academic into Its 2nd Century Project Advancement Project (Thailand); the Kavli Foundation ; the Nvidia Corporation; the SuperMicro Corporation ; the Welch Foundation , contract C-1845 ; and the Weston Havens Foundation (USA). Funding Information: We also acknowledge the following institutions: Institut für Hochenergiephysik , Wien; Inter University Institute For High Energies , Brussel; Université Catholique de Louvain , Louvain-la-Neuve; São Paulo Research and Analysis Center , São Paulo; Universidade do Estado do Rio de Janeiro , Rio de Janeiro; Institute of High Energy Physics of the Chinese Academy of Sciences, Beijing; National Institute of Chemical Physics and Biophysics , Tallinn; Helsinki Institute of Physics , Helsinki; Institut de recherche sur les lois fondamentales de l'Univers , CEA, Université Paris-Saclay , Gif-sur-Yvette; Institut national de physique nucléaire et de physique des particules , IN2P3 , Villeurbanne; Institut Pluridisciplinaire Hubert Curien (IPHC), Strasbourg; Laboratoire Leprince-Ringuet, CNRS/IN2P3, Ecole Polytechnique, Institut Polytechnique de Paris , Palaiseau; Deutsches Elektronen-Synchrotron , Hamburg; Karlsruher Institut für Technologie , Karlsruhe; RWTH Aachen University , Aachen; University of Ioánnina , Ioánnina; Wigner Research Centre for Physics , Budapest; Tata Institute of Fundamental Research , Mumbai; INFN CNAF, Bologna; INFN Sezione di Bari, Università di Bari, Politecnico di Bari, Bari; INFN Sezione di Pisa, Università di Pisa , Scuola Normale Superiore di Pisa , Pisa; INFN Sezione di Roma, Sapienza Università di Roma , Rome; Laboratori Nazionali di Legnaro , Legnaro; Kyungpook National University , Daegu; National Centre for Physics , Quaid-i-Azam University , Islamabad; National Centre for Nuclear Research , Swierk; Laboratório de Instrumentação e Física Experimental de Partículas , Lisboa; Institute for High Energy Physics of National Research Centre ‘Kurchatov Institute’ , Protvino; Institute for Nuclear Research (INR) of the Russian Academy of Sciences , Troitsk; Institute for Theoretical and Experimental Physics named by A.I. Alikhanov of NRC ‘Kurchatov Institute’ , Moscow; Joint Institute for Nuclear Research , Dubna; Korea Institute of Science and Technology Information (KISTI), Daejeon; Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid; Instituto de Física de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander; Port d'Informació Científica , Bellaterra; CERN, European Organization for Nuclear Research , Geneva; CSCS - Swiss National Supercomputing Centre , Lugano; National Center for High-performance Computing (NCHC), Tainan City; Middle East Technical University , Physics Department, Ankara; National Scientific Center, Kharkov Institute of Physics and Technology , Kharkov; GridPP, Brunel University , Uxbridge; GridPP, Imperial College London ; GridPP, Queen Mary University of London , London; GridPP, Royal Holloway, University of London , London; GridPP, Rutherford Appleton Laboratory , Didcot; GridPP, University of Bristol , Bristol; GridPP, University of Glasgow , Glasgow; GridPP, University of Oxford , Oxford; California Institute of Technology , Pasadena; Fermi National Accelerator Laboratory , Batavia; Massachusetts Institute of Technology , Cambridge; National Energy Research Scientific Computing Center (NERSC), a U.S. Department of Energy Office of Science User Facility, Berkeley; Pittsburgh Supercomputing Center (PSC), Pittsburgh; Purdue University , West Lafayette; San Diego Supercomputer Center (SDSC), La Jolla; Texas Advanced Computing Center (TACC), Austin; University of California, San Diego , La Jolla; University of Colorado Boulder , Boulder; University of Florida , Gainesville; University of Nebraska-Lincoln , Lincoln; University of Wisconsin - Madison, Madison; Vanderbilt University , Nashville. Publisher Copyright: © 2022 The Author(s)

PY - 2022/3/10

Y1 - 2022/3/10

N2 - A search for Wγ resonances in the mass range between 0.7 and 6.0 TeV is presented. The W boson is reconstructed via its hadronic decays, with the final-state products forming a single large-radius jet, owing to a high Lorentz boost of the W boson. The search is based on proton-proton collision data at s=13 TeV, corresponding to an integrated luminosity of 137 fb−1, collected with the CMS detector at the LHC in 2016–2018. The Wγ mass spectrum is parameterized with a smoothly falling background function and examined for the presence of resonance-like signals. No significant excess above the predicted background is observed. Model-specific upper limits at 95% confidence level on the product of the cross section and branching fraction to the Wγ channel are set. Limits for narrow resonances and for resonances with an intrinsic width equal to 5% of their mass, for spin-0 and spin-1 hypotheses, range between 0.17 fb at 6.0 TeV and 55 fb at 0.7 TeV. These are the most restrictive limits to date on the existence of such resonances over a large range of probed masses. In specific heavy scalar (vector) triplet benchmark models, narrow resonances with masses between 0.75 (1.15) and 1.40 (1.36) TeV are excluded for a range of model parameters. Model-independent limits on the product of the cross section, signal acceptance, and branching fraction to the Wγ channel are set for minimum Wγ mass thresholds between 1.5 and 8.0 TeV.

AB - A search for Wγ resonances in the mass range between 0.7 and 6.0 TeV is presented. The W boson is reconstructed via its hadronic decays, with the final-state products forming a single large-radius jet, owing to a high Lorentz boost of the W boson. The search is based on proton-proton collision data at s=13 TeV, corresponding to an integrated luminosity of 137 fb−1, collected with the CMS detector at the LHC in 2016–2018. The Wγ mass spectrum is parameterized with a smoothly falling background function and examined for the presence of resonance-like signals. No significant excess above the predicted background is observed. Model-specific upper limits at 95% confidence level on the product of the cross section and branching fraction to the Wγ channel are set. Limits for narrow resonances and for resonances with an intrinsic width equal to 5% of their mass, for spin-0 and spin-1 hypotheses, range between 0.17 fb at 6.0 TeV and 55 fb at 0.7 TeV. These are the most restrictive limits to date on the existence of such resonances over a large range of probed masses. In specific heavy scalar (vector) triplet benchmark models, narrow resonances with masses between 0.75 (1.15) and 1.40 (1.36) TeV are excluded for a range of model parameters. Model-independent limits on the product of the cross section, signal acceptance, and branching fraction to the Wγ channel are set for minimum Wγ mass thresholds between 1.5 and 8.0 TeV.

KW - BSM particles

KW - CMS

KW - Wgamma resonances

UR - http://www.scopus.com/inward/record.url?scp=85123911583&partnerID=8YFLogxK

U2 - 10.1016/j.physletb.2022.136888

DO - 10.1016/j.physletb.2022.136888

M3 - Article

AN - SCOPUS:85123911583

VL - 826

JO - Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics

JF - Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics

SN - 0370-2693

M1 - 136888

ER -

ID: 35429529