Standard

Search for the doubly charmed baryon Ξcc+ in the Ξc+π−π+ final state. / The LHCb Collaboration.

In: Journal of High Energy Physics, Vol. 2021, No. 12, 107, 12.2021.

Research output: Contribution to journalArticlepeer-review

Harvard

The LHCb Collaboration 2021, 'Search for the doubly charmed baryon Ξcc+ in the Ξc+π−π+ final state', Journal of High Energy Physics, vol. 2021, no. 12, 107. https://doi.org/10.1007/JHEP12(2021)107

APA

The LHCb Collaboration (2021). Search for the doubly charmed baryon Ξcc+ in the Ξc+π−π+ final state. Journal of High Energy Physics, 2021(12), [107]. https://doi.org/10.1007/JHEP12(2021)107

Vancouver

The LHCb Collaboration. Search for the doubly charmed baryon Ξcc+ in the Ξc+π−π+ final state. Journal of High Energy Physics. 2021 Dec;2021(12):107. doi: 10.1007/JHEP12(2021)107

Author

The LHCb Collaboration. / Search for the doubly charmed baryon Ξcc+ in the Ξc+π−π+ final state. In: Journal of High Energy Physics. 2021 ; Vol. 2021, No. 12.

BibTeX

@article{8f6f3fb0c9b84efca8dbe92b3f7b7d23,
title = "Search for the doubly charmed baryon Ξcc+ in the Ξc+π−π+ final state",
abstract = "A search for the doubly charmed baryon Ξcc+ is performed in the Ξc+π−π+ invariant-mass spectrum, where the Ξc+ baryon is reconstructed in the pK−π+ final state. The study uses proton-proton collision data collected with the LHCb detector at a centre- of-mass energy of 13 TeV, corresponding to a total integrated luminosity of 5.4 fb−1. No significant signal is observed in the invariant-mass range of 3.4–3.8 GeV/c2. Upper limits are set on the ratio of branching fractions multiplied by the production cross-section with respect to the Ξcc++→ (Ξc+→ pK−π+)π+ decay for different Ξcc+ mass and lifetime hypotheses in the rapidity range from 2.0 to 4.5 and the transverse momentum range from 2.5 to 25 GeV/c. The results from this search are combined with a previously published search for the Ξcc+→Λc+K−π+ decay mode, yielding a maximum local significance of 4.0 standard deviations around the mass of 3620 MeV/c2, including systematic uncertainties. Taking into account the look-elsewhere effect in the 3.5–3.7 GeV/c2 mass window, the combined global significance is 2.9 standard deviations including systematic uncertainties.",
keywords = "Branching fraction, Charm physics, Flavor physics, Hadron-Hadron scattering (experiments), QCD",
author = "{The LHCb Collaboration} and R. Aaij and Abdelmotteleb, {A. S.W.} and {Abell{\'a}n Beteta}, C. and T. Ackernley and B. Adeva and M. Adinolfi and H. Afsharnia and C. Agapopoulou and Aidala, {C. A.} and S. Aiola and Z. Ajaltouni and S. Akar and J. Albrecht and F. Alessio and M. Alexander and {Alfonso Albero}, A. and Z. Aliouche and G. Alkhazov and {Alvarez Cartelle}, P. and S. Amato and Amey, {J. L.} and Y. Amhis and L. An and L. Anderlini and A. Andreianov and M. Andreotti and F. Archilli and A. Artamonov and M. Artuso and K. Arzymatov and E. Aslanides and M. Atzeni and B. Audurier and S. Bachmann and M. Bachmayer and Back, {J. J.} and {Baladron Rodriguez}, P. and V. Balagura and W. Baldini and {Baptista Leite}, J. and M. Barbetti and Barlow, {R. J.} and S. Barsuk and A. Bondar and S. Eidelman and P. Krokovny and V. Kudryavtsev and T. Maltsev and L. Shekhtman and V. Vorobyev",
note = "We express our gratitude to our colleagues in the CERN accelerator departments for the excellent performance of the LHC. We thank the technical and administrative staff at the LHCb institutes. We acknowledge support from CERN and from the national agencies: CAPES, CNPq, FAPERJ and FINEP (Brazil); MOST and NSFC (China); CNRS/IN2P3 (France); BMBF, DFG and MPG (Germany); INFN (Italy); NWO (Netherlands); MNiSW and NCN (Poland); MEN/IFA (Romania); MSHE (Russia); MICINN (Spain); SNSF and SER (Switzerland); NASU (Ukraine); STFC (United Kingdom); DOE NP and NSF (U.S.A.). We acknowledge the computing resources that are provided by CERN, IN2P3 (France), KIT and DESY (Germany), INFN (Italy), SURF (Netherlands), PIC (Spain), GridPP (United Kingdom), RRCKI and Yandex LLC (Russia), CSCS (Switzerland), IFINHH (Romania), CBPF (Brazil), PL-GRID (Poland) and NERSC (U.S.A.). We are indebted to the communities behind the multiple open-source software packages on which we depend. Individual groups or members have received support from ARC and ARDC (Australia); AvH Foundation (Germany); EPLANET, Marie Sklodowska-Curie Actions and ERC (European Union); A*MIDEX, ANR, IPhU and Labex P2IO, and Region AuvergneRhone-Alpes (France); Key Research Program of Frontier Sciences of CAS, CAS PIFI, CAS CCEPP, Fundamental Research Funds for the Central Universities, and Sci. & Tech. Program of Guangzhou (China); RFBR, RSF and Yandex LLC (Russia); GVA, XuntaGal and GENCAT (Spain); the Leverhulme Trust, the Royal Society and UKRI (United Kingdom). Publisher Copyright: {\textcopyright} 2021, The Author(s).",
year = "2021",
month = dec,
doi = "10.1007/JHEP12(2021)107",
language = "English",
volume = "2021",
journal = "Journal of High Energy Physics",
issn = "1029-8479",
publisher = "Springer US",
number = "12",

}

RIS

TY - JOUR

T1 - Search for the doubly charmed baryon Ξcc+ in the Ξc+π−π+ final state

AU - The LHCb Collaboration

AU - Aaij, R.

AU - Abdelmotteleb, A. S.W.

AU - Abellán Beteta, C.

AU - Ackernley, T.

AU - Adeva, B.

AU - Adinolfi, M.

AU - Afsharnia, H.

AU - Agapopoulou, C.

AU - Aidala, C. A.

AU - Aiola, S.

AU - Ajaltouni, Z.

AU - Akar, S.

AU - Albrecht, J.

AU - Alessio, F.

AU - Alexander, M.

AU - Alfonso Albero, A.

AU - Aliouche, Z.

AU - Alkhazov, G.

AU - Alvarez Cartelle, P.

AU - Amato, S.

AU - Amey, J. L.

AU - Amhis, Y.

AU - An, L.

AU - Anderlini, L.

AU - Andreianov, A.

AU - Andreotti, M.

AU - Archilli, F.

AU - Artamonov, A.

AU - Artuso, M.

AU - Arzymatov, K.

AU - Aslanides, E.

AU - Atzeni, M.

AU - Audurier, B.

AU - Bachmann, S.

AU - Bachmayer, M.

AU - Back, J. J.

AU - Baladron Rodriguez, P.

AU - Balagura, V.

AU - Baldini, W.

AU - Baptista Leite, J.

AU - Barbetti, M.

AU - Barlow, R. J.

AU - Barsuk, S.

AU - Bondar, A.

AU - Eidelman, S.

AU - Krokovny, P.

AU - Kudryavtsev, V.

AU - Maltsev, T.

AU - Shekhtman, L.

AU - Vorobyev, V.

N1 - We express our gratitude to our colleagues in the CERN accelerator departments for the excellent performance of the LHC. We thank the technical and administrative staff at the LHCb institutes. We acknowledge support from CERN and from the national agencies: CAPES, CNPq, FAPERJ and FINEP (Brazil); MOST and NSFC (China); CNRS/IN2P3 (France); BMBF, DFG and MPG (Germany); INFN (Italy); NWO (Netherlands); MNiSW and NCN (Poland); MEN/IFA (Romania); MSHE (Russia); MICINN (Spain); SNSF and SER (Switzerland); NASU (Ukraine); STFC (United Kingdom); DOE NP and NSF (U.S.A.). We acknowledge the computing resources that are provided by CERN, IN2P3 (France), KIT and DESY (Germany), INFN (Italy), SURF (Netherlands), PIC (Spain), GridPP (United Kingdom), RRCKI and Yandex LLC (Russia), CSCS (Switzerland), IFINHH (Romania), CBPF (Brazil), PL-GRID (Poland) and NERSC (U.S.A.). We are indebted to the communities behind the multiple open-source software packages on which we depend. Individual groups or members have received support from ARC and ARDC (Australia); AvH Foundation (Germany); EPLANET, Marie Sklodowska-Curie Actions and ERC (European Union); A*MIDEX, ANR, IPhU and Labex P2IO, and Region AuvergneRhone-Alpes (France); Key Research Program of Frontier Sciences of CAS, CAS PIFI, CAS CCEPP, Fundamental Research Funds for the Central Universities, and Sci. & Tech. Program of Guangzhou (China); RFBR, RSF and Yandex LLC (Russia); GVA, XuntaGal and GENCAT (Spain); the Leverhulme Trust, the Royal Society and UKRI (United Kingdom). Publisher Copyright: © 2021, The Author(s).

PY - 2021/12

Y1 - 2021/12

N2 - A search for the doubly charmed baryon Ξcc+ is performed in the Ξc+π−π+ invariant-mass spectrum, where the Ξc+ baryon is reconstructed in the pK−π+ final state. The study uses proton-proton collision data collected with the LHCb detector at a centre- of-mass energy of 13 TeV, corresponding to a total integrated luminosity of 5.4 fb−1. No significant signal is observed in the invariant-mass range of 3.4–3.8 GeV/c2. Upper limits are set on the ratio of branching fractions multiplied by the production cross-section with respect to the Ξcc++→ (Ξc+→ pK−π+)π+ decay for different Ξcc+ mass and lifetime hypotheses in the rapidity range from 2.0 to 4.5 and the transverse momentum range from 2.5 to 25 GeV/c. The results from this search are combined with a previously published search for the Ξcc+→Λc+K−π+ decay mode, yielding a maximum local significance of 4.0 standard deviations around the mass of 3620 MeV/c2, including systematic uncertainties. Taking into account the look-elsewhere effect in the 3.5–3.7 GeV/c2 mass window, the combined global significance is 2.9 standard deviations including systematic uncertainties.

AB - A search for the doubly charmed baryon Ξcc+ is performed in the Ξc+π−π+ invariant-mass spectrum, where the Ξc+ baryon is reconstructed in the pK−π+ final state. The study uses proton-proton collision data collected with the LHCb detector at a centre- of-mass energy of 13 TeV, corresponding to a total integrated luminosity of 5.4 fb−1. No significant signal is observed in the invariant-mass range of 3.4–3.8 GeV/c2. Upper limits are set on the ratio of branching fractions multiplied by the production cross-section with respect to the Ξcc++→ (Ξc+→ pK−π+)π+ decay for different Ξcc+ mass and lifetime hypotheses in the rapidity range from 2.0 to 4.5 and the transverse momentum range from 2.5 to 25 GeV/c. The results from this search are combined with a previously published search for the Ξcc+→Λc+K−π+ decay mode, yielding a maximum local significance of 4.0 standard deviations around the mass of 3620 MeV/c2, including systematic uncertainties. Taking into account the look-elsewhere effect in the 3.5–3.7 GeV/c2 mass window, the combined global significance is 2.9 standard deviations including systematic uncertainties.

KW - Branching fraction

KW - Charm physics

KW - Flavor physics

KW - Hadron-Hadron scattering (experiments)

KW - QCD

UR - http://www.scopus.com/inward/record.url?scp=85121744028&partnerID=8YFLogxK

U2 - 10.1007/JHEP12(2021)107

DO - 10.1007/JHEP12(2021)107

M3 - Article

AN - SCOPUS:85121744028

VL - 2021

JO - Journal of High Energy Physics

JF - Journal of High Energy Physics

SN - 1029-8479

IS - 12

M1 - 107

ER -

ID: 35168401