Standard

Search for natural and split supersymmetry in proton-proton collisions at √s=13 TeV in final states with jets and missing transverse momentum. / The CMS collaboration.

In: Journal of High Energy Physics, Vol. 2018, No. 5, 25, 01.05.2018.

Research output: Contribution to journalArticlepeer-review

Harvard

APA

Vancouver

The CMS collaboration. Search for natural and split supersymmetry in proton-proton collisions at √s=13 TeV in final states with jets and missing transverse momentum. Journal of High Energy Physics. 2018 May 1;2018(5):25. doi: 10.1007/JHEP05(2018)025

Author

BibTeX

@article{1970b371bf8249418c776a4cd76cb1f0,
title = "Search for natural and split supersymmetry in proton-proton collisions at √s=13 TeV in final states with jets and missing transverse momentum",
abstract = "A search for supersymmetry (SUSY) is performed in final states comprising one or more jets and missing transverse momentum using data from proton-proton collisions at a centre-of-mass energy of 13 TeV. The data were recorded with the CMS detector at the CERN LHC in 2016 and correspond to an integrated luminosity of 35.9 fb−1. The number of signal events is found to agree with the expected background yields from standard model processes. The results are interpreted in the context of simplified models of SUSY that assume the production of gluino or squark pairs and their prompt decay to quarks and the lightest neutralino. The masses of bottom, top, and mass-degenerate light-flavour squarks are probed up to 1050, 1000, and 1325 GeV, respectively. The gluino mass is probed up to 1900, 1650, and 1650 GeV when the gluino decays via virtual states of the aforementioned squarks. The strongest mass bounds on the neutralinos from gluino and squark decays are 1150 and 575 GeV, respectively. The search also provides sensitivity to simplified models inspired by split SUSY that involve the production and decay of long-lived gluinos. Values of the proper decay length cτ0 from 10−3 to 105 mm are considered, as well as a metastable gluino scenario. Gluino masses up to 1750 and 900 GeV are probed for cτ0 = 1 mm and for the metastable state, respectively. The sensitivity is moderately dependent on model assumptions for cτ0 ≳ 1 m. The search provides coverage of the cτ0 parameter space for models involving long-lived gluinos that is complementary to existing techniques at the LHC.",
keywords = "Dark matter, Hadron-Hadron scattering (experiments), Supersymmetry, PARTICLES, MASS, PREDICTIONS, SQUARK",
author = "{The CMS collaboration} and Sirunyan, {A. M.} and A. Tumasyan and W. Adam and F. Ambrogi and E. Asilar and T. Bergauer and J. Brandstetter and E. Brondolin and M. Dragicevic and J. Er{\"o} and {Escalante Del Valle}, A. and M. Flechl and M. Friedl and R. Fr{\"u}hwirth and Ghete, {V. M.} and J. Grossmann and J. Hrubec and M. Jeitler and A. K{\"o}nig and N. Krammer and I. Kr{\"a}tschmer and D. Liko and T. Madlener and I. Mikulec and E. Pree and N. Rad and H. Rohringer and J. Schieck and R. Sch{\"o}fbeck and M. Spanring and D. Spitzbart and A. Taurok and W. Waltenberger and J. Wittmann and Wulz, {C. E.} and M. Zarucki and V. Chekhovsky and V. Mossolov and {Suarez Gonzalez}, J. and {De Wolf}, {E. A.} and {Di Croce}, D. and X. Janssen and J. Lauwers and M. Pieters and {Van De Klundert}, M. and {Van Haevermaet}, H. and {Van Mechelen}, P. and {Van Remortel}, N. and D. Shtol and Y. Skovpen",
note = "Publisher Copyright: {\textcopyright} 2018, The Author(s).",
year = "2018",
month = may,
day = "1",
doi = "10.1007/JHEP05(2018)025",
language = "English",
volume = "2018",
journal = "Journal of High Energy Physics",
issn = "1029-8479",
publisher = "Springer US",
number = "5",

}

RIS

TY - JOUR

T1 - Search for natural and split supersymmetry in proton-proton collisions at √s=13 TeV in final states with jets and missing transverse momentum

AU - The CMS collaboration

AU - Sirunyan, A. M.

AU - Tumasyan, A.

AU - Adam, W.

AU - Ambrogi, F.

AU - Asilar, E.

AU - Bergauer, T.

AU - Brandstetter, J.

AU - Brondolin, E.

AU - Dragicevic, M.

AU - Erö, J.

AU - Escalante Del Valle, A.

AU - Flechl, M.

AU - Friedl, M.

AU - Frühwirth, R.

AU - Ghete, V. M.

AU - Grossmann, J.

AU - Hrubec, J.

AU - Jeitler, M.

AU - König, A.

AU - Krammer, N.

AU - Krätschmer, I.

AU - Liko, D.

AU - Madlener, T.

AU - Mikulec, I.

AU - Pree, E.

AU - Rad, N.

AU - Rohringer, H.

AU - Schieck, J.

AU - Schöfbeck, R.

AU - Spanring, M.

AU - Spitzbart, D.

AU - Taurok, A.

AU - Waltenberger, W.

AU - Wittmann, J.

AU - Wulz, C. E.

AU - Zarucki, M.

AU - Chekhovsky, V.

AU - Mossolov, V.

AU - Suarez Gonzalez, J.

AU - De Wolf, E. A.

AU - Di Croce, D.

AU - Janssen, X.

AU - Lauwers, J.

AU - Pieters, M.

AU - Van De Klundert, M.

AU - Van Haevermaet, H.

AU - Van Mechelen, P.

AU - Van Remortel, N.

AU - Shtol, D.

AU - Skovpen, Y.

N1 - Publisher Copyright: © 2018, The Author(s).

PY - 2018/5/1

Y1 - 2018/5/1

N2 - A search for supersymmetry (SUSY) is performed in final states comprising one or more jets and missing transverse momentum using data from proton-proton collisions at a centre-of-mass energy of 13 TeV. The data were recorded with the CMS detector at the CERN LHC in 2016 and correspond to an integrated luminosity of 35.9 fb−1. The number of signal events is found to agree with the expected background yields from standard model processes. The results are interpreted in the context of simplified models of SUSY that assume the production of gluino or squark pairs and their prompt decay to quarks and the lightest neutralino. The masses of bottom, top, and mass-degenerate light-flavour squarks are probed up to 1050, 1000, and 1325 GeV, respectively. The gluino mass is probed up to 1900, 1650, and 1650 GeV when the gluino decays via virtual states of the aforementioned squarks. The strongest mass bounds on the neutralinos from gluino and squark decays are 1150 and 575 GeV, respectively. The search also provides sensitivity to simplified models inspired by split SUSY that involve the production and decay of long-lived gluinos. Values of the proper decay length cτ0 from 10−3 to 105 mm are considered, as well as a metastable gluino scenario. Gluino masses up to 1750 and 900 GeV are probed for cτ0 = 1 mm and for the metastable state, respectively. The sensitivity is moderately dependent on model assumptions for cτ0 ≳ 1 m. The search provides coverage of the cτ0 parameter space for models involving long-lived gluinos that is complementary to existing techniques at the LHC.

AB - A search for supersymmetry (SUSY) is performed in final states comprising one or more jets and missing transverse momentum using data from proton-proton collisions at a centre-of-mass energy of 13 TeV. The data were recorded with the CMS detector at the CERN LHC in 2016 and correspond to an integrated luminosity of 35.9 fb−1. The number of signal events is found to agree with the expected background yields from standard model processes. The results are interpreted in the context of simplified models of SUSY that assume the production of gluino or squark pairs and their prompt decay to quarks and the lightest neutralino. The masses of bottom, top, and mass-degenerate light-flavour squarks are probed up to 1050, 1000, and 1325 GeV, respectively. The gluino mass is probed up to 1900, 1650, and 1650 GeV when the gluino decays via virtual states of the aforementioned squarks. The strongest mass bounds on the neutralinos from gluino and squark decays are 1150 and 575 GeV, respectively. The search also provides sensitivity to simplified models inspired by split SUSY that involve the production and decay of long-lived gluinos. Values of the proper decay length cτ0 from 10−3 to 105 mm are considered, as well as a metastable gluino scenario. Gluino masses up to 1750 and 900 GeV are probed for cτ0 = 1 mm and for the metastable state, respectively. The sensitivity is moderately dependent on model assumptions for cτ0 ≳ 1 m. The search provides coverage of the cτ0 parameter space for models involving long-lived gluinos that is complementary to existing techniques at the LHC.

KW - Dark matter

KW - Hadron-Hadron scattering (experiments)

KW - Supersymmetry

KW - PARTICLES

KW - MASS

KW - PREDICTIONS

KW - SQUARK

UR - http://www.scopus.com/inward/record.url?scp=85047375913&partnerID=8YFLogxK

U2 - 10.1007/JHEP05(2018)025

DO - 10.1007/JHEP05(2018)025

M3 - Article

AN - SCOPUS:85047375913

VL - 2018

JO - Journal of High Energy Physics

JF - Journal of High Energy Physics

SN - 1029-8479

IS - 5

M1 - 25

ER -

ID: 13542221