Standard

Search for low mass vector resonances decaying into quark-antiquark pairs in proton-proton collisions at s =13 TeV. / The CMS collaboration ; Блинов, Владимир Евгеньевич.

In: Physical Review D, Vol. 100, No. 11, 112007, 20.12.2019.

Research output: Contribution to journalArticlepeer-review

Harvard

APA

Vancouver

The CMS collaboration, Блинов ВЕ. Search for low mass vector resonances decaying into quark-antiquark pairs in proton-proton collisions at s =13 TeV. Physical Review D. 2019 Dec 20;100(11):112007. doi: 10.1103/PhysRevD.100.112007

Author

BibTeX

@article{84c0fb2c05824dc9a5e3491ecec97ec7,
title = "Search for low mass vector resonances decaying into quark-antiquark pairs in proton-proton collisions at s =13 TeV",
abstract = "A search for low mass narrow vector resonances decaying into quark-antiquark pairs is presented. The analysis is based on data collected in 2017 with the CMS detector at the LHC in proton-proton collisions at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 41.1 fb-1. The results of this analysis are combined with those of an earlier analysis based on data collected at the same collision energy in 2016, corresponding to 35.9 fb-1. Signal candidates will be recoiling against initial state radiation and are identified as energetic, large-radius jets with two pronged substructure. The invariant jet mass spectrum is probed for a potential narrow peaking signal over a smoothly falling background. No evidence for such resonances is observed within the mass range of 50-450 GeV. Upper limits at the 95% confidence level are set on the coupling of narrow resonances to quarks, as a function of the resonance mass. For masses between 50 and 300 GeV these are the most sensitive limits to date. This analysis extends the earlier search to a mass range of 300-450 GeV, which is probed for the first time with jet substructure techniques.",
keywords = "ASSOCIATION, ALGORITHMS, PHOTON",
author = "{The CMS collaboration} and Sirunyan, {A. M.} and A. Tumasyan and W. Adam and F. Ambrogi and T. Bergauer and J. Brandstetter and M. Dragicevic and J. Er{\"o} and {Escalante Del Valle}, A. and M. Flechl and R. Fr{\"u}hwirth and M. Jeitler and N. Krammer and I. Kr{\"a}tschmer and D. Liko and T. Madlener and I. Mikulec and N. Rad and J. Schieck and R. Sch{\"o}fbeck and M. Spanring and D. Spitzbart and W. Waltenberger and Wulz, {C. E.} and M. Zarucki and V. Drugakov and V. Mossolov and {Suarez Gonzalez}, J. and Darwish, {M. R.} and {De Wolf}, {E. A.} and {Di Croce}, D. and X. Janssen and A. Lelek and M. Pieters and {Rejeb Sfar}, H. and {Van Haevermaet}, H. and {Van Mechelen}, P. and {Van Putte}, S. and {Van Remortel}, N. and F. Blekman and Bols, {E. S.} and Chhibra, {S. S.} and J. D'Hondt and {De Clercq}, J. and D. Lontkovskyi and S. Lowette and A. Barnyakov and T. Dimova and L. Kardapoltsev and Y. Skovpen and Блинов, {Владимир Евгеньевич}",
year = "2019",
month = dec,
day = "20",
doi = "10.1103/PhysRevD.100.112007",
language = "English",
volume = "100",
journal = "Physical Review D",
issn = "2470-0010",
publisher = "AMER PHYSICAL SOC",
number = "11",

}

RIS

TY - JOUR

T1 - Search for low mass vector resonances decaying into quark-antiquark pairs in proton-proton collisions at s =13 TeV

AU - The CMS collaboration

AU - Sirunyan, A. M.

AU - Tumasyan, A.

AU - Adam, W.

AU - Ambrogi, F.

AU - Bergauer, T.

AU - Brandstetter, J.

AU - Dragicevic, M.

AU - Erö, J.

AU - Escalante Del Valle, A.

AU - Flechl, M.

AU - Frühwirth, R.

AU - Jeitler, M.

AU - Krammer, N.

AU - Krätschmer, I.

AU - Liko, D.

AU - Madlener, T.

AU - Mikulec, I.

AU - Rad, N.

AU - Schieck, J.

AU - Schöfbeck, R.

AU - Spanring, M.

AU - Spitzbart, D.

AU - Waltenberger, W.

AU - Wulz, C. E.

AU - Zarucki, M.

AU - Drugakov, V.

AU - Mossolov, V.

AU - Suarez Gonzalez, J.

AU - Darwish, M. R.

AU - De Wolf, E. A.

AU - Di Croce, D.

AU - Janssen, X.

AU - Lelek, A.

AU - Pieters, M.

AU - Rejeb Sfar, H.

AU - Van Haevermaet, H.

AU - Van Mechelen, P.

AU - Van Putte, S.

AU - Van Remortel, N.

AU - Blekman, F.

AU - Bols, E. S.

AU - Chhibra, S. S.

AU - D'Hondt, J.

AU - De Clercq, J.

AU - Lontkovskyi, D.

AU - Lowette, S.

AU - Barnyakov, A.

AU - Dimova, T.

AU - Kardapoltsev, L.

AU - Skovpen, Y.

AU - Блинов, Владимир Евгеньевич

PY - 2019/12/20

Y1 - 2019/12/20

N2 - A search for low mass narrow vector resonances decaying into quark-antiquark pairs is presented. The analysis is based on data collected in 2017 with the CMS detector at the LHC in proton-proton collisions at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 41.1 fb-1. The results of this analysis are combined with those of an earlier analysis based on data collected at the same collision energy in 2016, corresponding to 35.9 fb-1. Signal candidates will be recoiling against initial state radiation and are identified as energetic, large-radius jets with two pronged substructure. The invariant jet mass spectrum is probed for a potential narrow peaking signal over a smoothly falling background. No evidence for such resonances is observed within the mass range of 50-450 GeV. Upper limits at the 95% confidence level are set on the coupling of narrow resonances to quarks, as a function of the resonance mass. For masses between 50 and 300 GeV these are the most sensitive limits to date. This analysis extends the earlier search to a mass range of 300-450 GeV, which is probed for the first time with jet substructure techniques.

AB - A search for low mass narrow vector resonances decaying into quark-antiquark pairs is presented. The analysis is based on data collected in 2017 with the CMS detector at the LHC in proton-proton collisions at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 41.1 fb-1. The results of this analysis are combined with those of an earlier analysis based on data collected at the same collision energy in 2016, corresponding to 35.9 fb-1. Signal candidates will be recoiling against initial state radiation and are identified as energetic, large-radius jets with two pronged substructure. The invariant jet mass spectrum is probed for a potential narrow peaking signal over a smoothly falling background. No evidence for such resonances is observed within the mass range of 50-450 GeV. Upper limits at the 95% confidence level are set on the coupling of narrow resonances to quarks, as a function of the resonance mass. For masses between 50 and 300 GeV these are the most sensitive limits to date. This analysis extends the earlier search to a mass range of 300-450 GeV, which is probed for the first time with jet substructure techniques.

KW - ASSOCIATION

KW - ALGORITHMS

KW - PHOTON

UR - http://www.scopus.com/inward/record.url?scp=85077391071&partnerID=8YFLogxK

U2 - 10.1103/PhysRevD.100.112007

DO - 10.1103/PhysRevD.100.112007

M3 - Article

AN - SCOPUS:85077391071

VL - 100

JO - Physical Review D

JF - Physical Review D

SN - 2470-0010

IS - 11

M1 - 112007

ER -

ID: 23087921