Standard

Harvard

APA

Vancouver

Author

BibTeX

@article{975d0cab67fe4e68920c279ee22f5d4d,
title = "Search for heavy neutrinos and third-generation leptoquarks in hadronic states of two τ leptons and two jets in proton-proton collisions at √s=13 TeV",
abstract = " A search for new particles has been conducted using events with two high transverse momentum τ leptons that decay hadronically and at least two energetic jets. The analysis is performed using data from proton-proton collisions at s=13 TeV, collected by the CMS experiment at the LHC in 2016 and corresponding to an integrated luminosity of 35.9 fb −1 . The observed data are consistent with standard model expectations. The results are interpreted in the context of two physics models. The first model involves right-handed charged bosons, W R , that decay to heavy right-handed Majorana neutrinos, N ℓ (ℓ = e, μ, τ), arising in a left-right symmetric extension of the standard model. The model considers that N e and N μ are too heavy to be detected at the LHC. Assuming that the N τ mass is half of the W R mass, masses of the W R boson below 3.50 TeV are excluded at 95% confidence level. Exclusion limits are also presented considering different scenarios for the mass ratio between N τ and W R , as a function of W R mass. In the second model, pair production of third-generation scalar leptoquarks that decay into ττbb is considered, resulting in an observed exclusion region with leptoquark masses below 1.02 TeV, assuming a 100% branching fraction for the leptoquark decay to a τ lepton and a bottom quark. These results represent the most stringent limits to date on these models.",
keywords = "Beyond Standard Model, Dark matter, Hadron-Hadron scattering (experiments), SYMMETRY, INVARIANT, MASS, CONSTRAINTS, EXTENSION, MODEL",
author = "{The CMS collaboration} and Sirunyan, {A. M.} and A. Tumasyan and W. Adam and F. Ambrogi and E. Asilar and T. Bergauer and J. Brandstetter and M. Dragicevic and J. Er{\"o} and {Escalante Del Valle}, A. and M. Flechl and R. Fr{\"u}hwirth and Ghete, {V. M.} and J. Hrubec and M. Jeitler and N. Krammer and I. Kr{\"a}tschmer and D. Liko and T. Madlener and I. Mikulec and N. Rad and H. Rohringer and J. Schieck and R. Sch{\"o}fbeck and M. Spanring and D. Spitzbart and A. Taurok and W. Waltenberger and J. Wittmann and Wulz, {C. E.} and M. Zarucki and V. Chekhovsky and V. Mossolov and {Suarez Gonzalez}, J. and {De Wolf}, {E. A.} and {Di Croce}, D. and X. Janssen and J. Lauwers and M. Pieters and {Van Haevermaet}, H. and {Van Mechelen}, P. and {Van Remortel}, N. and {Abu Zeid}, S. and F. Blekman and J. D{\textquoteright}Hondt and {De Clercq}, J. and K. Deroover and A. Barnyakov and T. Dimova and L. Kardapoltsev and Блинов, {Владимир Евгеньевич} and Сковпень, {Юрий Иванович}",
note = "Publisher Copyright: {\textcopyright} 2019, The Author(s).",
year = "2019",
month = mar,
day = "1",
doi = "10.1007/JHEP03(2019)170",
language = "English",
volume = "2019",
journal = "Journal of High Energy Physics",
issn = "1029-8479",
publisher = "Springer US",
number = "3",

}

RIS

TY - JOUR

T1 - Search for heavy neutrinos and third-generation leptoquarks in hadronic states of two τ leptons and two jets in proton-proton collisions at √s=13 TeV

AU - The CMS collaboration

AU - Sirunyan, A. M.

AU - Tumasyan, A.

AU - Adam, W.

AU - Ambrogi, F.

AU - Asilar, E.

AU - Bergauer, T.

AU - Brandstetter, J.

AU - Dragicevic, M.

AU - Erö, J.

AU - Escalante Del Valle, A.

AU - Flechl, M.

AU - Frühwirth, R.

AU - Ghete, V. M.

AU - Hrubec, J.

AU - Jeitler, M.

AU - Krammer, N.

AU - Krätschmer, I.

AU - Liko, D.

AU - Madlener, T.

AU - Mikulec, I.

AU - Rad, N.

AU - Rohringer, H.

AU - Schieck, J.

AU - Schöfbeck, R.

AU - Spanring, M.

AU - Spitzbart, D.

AU - Taurok, A.

AU - Waltenberger, W.

AU - Wittmann, J.

AU - Wulz, C. E.

AU - Zarucki, M.

AU - Chekhovsky, V.

AU - Mossolov, V.

AU - Suarez Gonzalez, J.

AU - De Wolf, E. A.

AU - Di Croce, D.

AU - Janssen, X.

AU - Lauwers, J.

AU - Pieters, M.

AU - Van Haevermaet, H.

AU - Van Mechelen, P.

AU - Van Remortel, N.

AU - Abu Zeid, S.

AU - Blekman, F.

AU - D’Hondt, J.

AU - De Clercq, J.

AU - Deroover, K.

AU - Barnyakov, A.

AU - Dimova, T.

AU - Kardapoltsev, L.

AU - Блинов, Владимир Евгеньевич

AU - Сковпень, Юрий Иванович

N1 - Publisher Copyright: © 2019, The Author(s).

PY - 2019/3/1

Y1 - 2019/3/1

N2 - A search for new particles has been conducted using events with two high transverse momentum τ leptons that decay hadronically and at least two energetic jets. The analysis is performed using data from proton-proton collisions at s=13 TeV, collected by the CMS experiment at the LHC in 2016 and corresponding to an integrated luminosity of 35.9 fb −1 . The observed data are consistent with standard model expectations. The results are interpreted in the context of two physics models. The first model involves right-handed charged bosons, W R , that decay to heavy right-handed Majorana neutrinos, N ℓ (ℓ = e, μ, τ), arising in a left-right symmetric extension of the standard model. The model considers that N e and N μ are too heavy to be detected at the LHC. Assuming that the N τ mass is half of the W R mass, masses of the W R boson below 3.50 TeV are excluded at 95% confidence level. Exclusion limits are also presented considering different scenarios for the mass ratio between N τ and W R , as a function of W R mass. In the second model, pair production of third-generation scalar leptoquarks that decay into ττbb is considered, resulting in an observed exclusion region with leptoquark masses below 1.02 TeV, assuming a 100% branching fraction for the leptoquark decay to a τ lepton and a bottom quark. These results represent the most stringent limits to date on these models.

AB - A search for new particles has been conducted using events with two high transverse momentum τ leptons that decay hadronically and at least two energetic jets. The analysis is performed using data from proton-proton collisions at s=13 TeV, collected by the CMS experiment at the LHC in 2016 and corresponding to an integrated luminosity of 35.9 fb −1 . The observed data are consistent with standard model expectations. The results are interpreted in the context of two physics models. The first model involves right-handed charged bosons, W R , that decay to heavy right-handed Majorana neutrinos, N ℓ (ℓ = e, μ, τ), arising in a left-right symmetric extension of the standard model. The model considers that N e and N μ are too heavy to be detected at the LHC. Assuming that the N τ mass is half of the W R mass, masses of the W R boson below 3.50 TeV are excluded at 95% confidence level. Exclusion limits are also presented considering different scenarios for the mass ratio between N τ and W R , as a function of W R mass. In the second model, pair production of third-generation scalar leptoquarks that decay into ττbb is considered, resulting in an observed exclusion region with leptoquark masses below 1.02 TeV, assuming a 100% branching fraction for the leptoquark decay to a τ lepton and a bottom quark. These results represent the most stringent limits to date on these models.

KW - Beyond Standard Model

KW - Dark matter

KW - Hadron-Hadron scattering (experiments)

KW - SYMMETRY

KW - INVARIANT

KW - MASS

KW - CONSTRAINTS

KW - EXTENSION

KW - MODEL

UR - http://www.scopus.com/inward/record.url?scp=85063902132&partnerID=8YFLogxK

U2 - 10.1007/JHEP03(2019)170

DO - 10.1007/JHEP03(2019)170

M3 - Article

AN - SCOPUS:85063902132

VL - 2019

JO - Journal of High Energy Physics

JF - Journal of High Energy Physics

SN - 1029-8479

IS - 3

M1 - 170

ER -

ID: 19322199