Standard

Search for dark matter produced in association with a leptonically decaying Z boson in proton–proton collisions at √s=13Te. / The CMS collaboration ; Блинов, Владимир Евгеньевич; Сковпень, Юрий Иванович.

In: European Physical Journal C, Vol. 81, No. 1, 13, 01.2021, p. 13.

Research output: Contribution to journalArticlepeer-review

Harvard

APA

Vancouver

The CMS collaboration, Блинов ВЕ, Сковпень ЮИ. Search for dark matter produced in association with a leptonically decaying Z boson in proton–proton collisions at √s=13Te. European Physical Journal C. 2021 Jan;81(1):13. 13. doi: 10.1140/epjc/s10052-020-08739-5

Author

BibTeX

@article{1579c889f4dd43958ae14ddb21abcea9,
title = "Search for dark matter produced in association with a leptonically decaying Z boson in proton–proton collisions at √s=13Te",
abstract = "A search for dark matter particles is performed using events with a Z boson candidate and large missing transverse momentum. The analysis is based on proton–proton collision data at a center-of-mass energy of 13Te, collected by the CMS experiment at the LHC in 2016–2018, corresponding to an integrated luminosity of 137fb-1. The search uses the decay channels Z → e e and Z → μ μ. No significant excess of events is observed over the background expected from the standard model. Limits are set on dark matter particle production in the context of simplified models with vector, axial-vector, scalar, and pseudoscalar mediators, as well as on a two-Higgs-doublet model with an additional pseudoscalar mediator. In addition, limits are provided for spin-dependent and spin-independent scattering cross sections and are compared to those from direct-detection experiments. The results are also interpreted in the context of models of invisible Higgs boson decays, unparticles, and large extra dimensions.",
author = "{The CMS collaboration} and Sirunyan, {A. M.} and A. Tumasyan and W. Adam and T. Bergauer and M. Dragicevic and J. Er{\"o} and Valle, {A. Escalante Del} and R. Fr{\"u}hwirth and M. Jeitler and N. Krammer and L. Lechner and D. Liko and T. Madlener and I. Mikulec and Pitters, {F. M.} and N. Rad and J. Schieck and R. Sch{\"o}fbeck and M. Spanring and S. Templ and W. Waltenberger and Wulz, {C. E.} and M. Zarucki and V. Chekhovsky and A. Litomin and V. Makarenko and Gonzalez, {J. Suarez} and Darwish, {M. R.} and {De Wolf}, {E. A.} and Croce, {D. Di} and X. Janssen and T. Kello and A. Lelek and M. Pieters and Sfar, {H. Rejeb} and Haevermaet, {H. Van} and Mechelen, {P. Van} and Putte, {S. Van} and Remortel, {N. Van} and F. Blekman and Bols, {E. S.} and Chhibra, {S. S.} and J. D{\textquoteright}Hondt and {De Clercq}, J. and D. Lontkovskyi and S. Lowette and I. Marchesini and Блинов, {Владимир Евгеньевич} and T. Dimova and L. Kardapoltsev and I. Ovtin and Сковпень, {Юрий Иванович}",
note = "Funding Information: We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMBWF and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, FAPERGS, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RIF (Cyprus); SENESCYT (Ecuador); MoER, ERC IUT, PUT and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); NKFIA (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); MES (Latvia); LAS (Lithuania); MOE and UM (Malaysia); BUAP, CINVESTAV, CONACYT, LNS, SEP, and UASLP-FAI (Mexico); MOS (Montenegro); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS, RFBR, and NRC KI (Russia); MESTD (Serbia); SEIDI, CPAN, PCTI, and FEDER (Spain); MOSTR (Sri Lanka); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR, and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU (Ukraine); STFC (United Kingdom); DOE and NSF (USA). Individuals have received support from the Marie-Curie program and the European Research Council and Horizon 2020 Grant, contract Nos. 675440, 752730, and 765710 (European Union); the Leventis Foundation; the A.P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation {\`a} la Recherche dans l{\textquoteright}Industrie et dans l{\textquoteright}Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the F.R.S.-FNRS and FWO (Belgium) under the “Excellence of Science – EOS” – be.h project n. 30820817; the Beijing Municipal Science & Technology Commission, No. Z191100007219010; the Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; the Deutsche Forschungsgemeinschaft (DFG) under Germany{\textquoteright}s Excellence Strategy – EXC 2121 “Quantum Universe” – 390833306; the Lend{\"u}let (“Momentum”) Program and the J{\'a}nos Bolyai Research Scholarship of the Hungarian Academy of Sciences, the New National Excellence Program {\'U}NKP, the NKFIA research grants 123842, 123959, 124845, 124850, 125105, 128713, 128786, and 129058 (Hungary); the Council of Science and Industrial Research, India; the HOMING PLUS program of the Foundation for Polish Science, cofinanced from European Union, Regional Development Fund, the Mobility Plus program of the Ministry of Science and Higher Education, the National Science Center (Poland), contracts Harmonia 2014/14/M/ST2/00428, Opus 2014/13/B/ST2/02543, 2014/15/B/ST2/03998, and 2015/19/B/ST2/02861, Sonata-bis 2012/07/E/ST2/01406; the National Priorities Research Program by Qatar National Research Fund; the Ministry of Science and Higher Education, project no. 02.a03.21.0005 (Russia); the Programa Estatal de Fomento de la Investigaci{\'o}n Cient{\'i}fica y T{\'e}cnica de Excelencia Mar{\'i}a de Maeztu, grant MDM-2015-0509 and the Programa Severo Ochoa del Principado de Asturias; the Thalis and Aristeia programs cofinanced by EU-ESF and the Greek NSRF; the Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chulalongkorn University and the Chulalongkorn Academic into Its 2nd Century Project Advancement Project (Thailand); the Kavli Foundation; the Nvidia Corporation; the SuperMicro Corporation; the Welch Foundation, contract C-1845; and the Weston Havens Foundation (USA). Publisher Copyright: {\textcopyright} 2020, CERN for the benefit of the CMS collaboration. Copyright: Copyright 2021 Elsevier B.V., All rights reserved.",
year = "2021",
month = jan,
doi = "10.1140/epjc/s10052-020-08739-5",
language = "English",
volume = "81",
pages = "13",
journal = "European Physical Journal C",
issn = "1434-6044",
publisher = "Springer Nature",
number = "1",

}

RIS

TY - JOUR

T1 - Search for dark matter produced in association with a leptonically decaying Z boson in proton–proton collisions at √s=13Te

AU - The CMS collaboration

AU - Sirunyan, A. M.

AU - Tumasyan, A.

AU - Adam, W.

AU - Bergauer, T.

AU - Dragicevic, M.

AU - Erö, J.

AU - Valle, A. Escalante Del

AU - Frühwirth, R.

AU - Jeitler, M.

AU - Krammer, N.

AU - Lechner, L.

AU - Liko, D.

AU - Madlener, T.

AU - Mikulec, I.

AU - Pitters, F. M.

AU - Rad, N.

AU - Schieck, J.

AU - Schöfbeck, R.

AU - Spanring, M.

AU - Templ, S.

AU - Waltenberger, W.

AU - Wulz, C. E.

AU - Zarucki, M.

AU - Chekhovsky, V.

AU - Litomin, A.

AU - Makarenko, V.

AU - Gonzalez, J. Suarez

AU - Darwish, M. R.

AU - De Wolf, E. A.

AU - Croce, D. Di

AU - Janssen, X.

AU - Kello, T.

AU - Lelek, A.

AU - Pieters, M.

AU - Sfar, H. Rejeb

AU - Haevermaet, H. Van

AU - Mechelen, P. Van

AU - Putte, S. Van

AU - Remortel, N. Van

AU - Blekman, F.

AU - Bols, E. S.

AU - Chhibra, S. S.

AU - D’Hondt, J.

AU - De Clercq, J.

AU - Lontkovskyi, D.

AU - Lowette, S.

AU - Marchesini, I.

AU - Блинов, Владимир Евгеньевич

AU - Dimova, T.

AU - Kardapoltsev, L.

AU - Ovtin, I.

AU - Сковпень, Юрий Иванович

N1 - Funding Information: We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMBWF and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, FAPERGS, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RIF (Cyprus); SENESCYT (Ecuador); MoER, ERC IUT, PUT and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); NKFIA (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); MES (Latvia); LAS (Lithuania); MOE and UM (Malaysia); BUAP, CINVESTAV, CONACYT, LNS, SEP, and UASLP-FAI (Mexico); MOS (Montenegro); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS, RFBR, and NRC KI (Russia); MESTD (Serbia); SEIDI, CPAN, PCTI, and FEDER (Spain); MOSTR (Sri Lanka); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR, and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU (Ukraine); STFC (United Kingdom); DOE and NSF (USA). Individuals have received support from the Marie-Curie program and the European Research Council and Horizon 2020 Grant, contract Nos. 675440, 752730, and 765710 (European Union); the Leventis Foundation; the A.P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation à la Recherche dans l’Industrie et dans l’Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the F.R.S.-FNRS and FWO (Belgium) under the “Excellence of Science – EOS” – be.h project n. 30820817; the Beijing Municipal Science & Technology Commission, No. Z191100007219010; the Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; the Deutsche Forschungsgemeinschaft (DFG) under Germany’s Excellence Strategy – EXC 2121 “Quantum Universe” – 390833306; the Lendület (“Momentum”) Program and the János Bolyai Research Scholarship of the Hungarian Academy of Sciences, the New National Excellence Program ÚNKP, the NKFIA research grants 123842, 123959, 124845, 124850, 125105, 128713, 128786, and 129058 (Hungary); the Council of Science and Industrial Research, India; the HOMING PLUS program of the Foundation for Polish Science, cofinanced from European Union, Regional Development Fund, the Mobility Plus program of the Ministry of Science and Higher Education, the National Science Center (Poland), contracts Harmonia 2014/14/M/ST2/00428, Opus 2014/13/B/ST2/02543, 2014/15/B/ST2/03998, and 2015/19/B/ST2/02861, Sonata-bis 2012/07/E/ST2/01406; the National Priorities Research Program by Qatar National Research Fund; the Ministry of Science and Higher Education, project no. 02.a03.21.0005 (Russia); the Programa Estatal de Fomento de la Investigación Científica y Técnica de Excelencia María de Maeztu, grant MDM-2015-0509 and the Programa Severo Ochoa del Principado de Asturias; the Thalis and Aristeia programs cofinanced by EU-ESF and the Greek NSRF; the Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chulalongkorn University and the Chulalongkorn Academic into Its 2nd Century Project Advancement Project (Thailand); the Kavli Foundation; the Nvidia Corporation; the SuperMicro Corporation; the Welch Foundation, contract C-1845; and the Weston Havens Foundation (USA). Publisher Copyright: © 2020, CERN for the benefit of the CMS collaboration. Copyright: Copyright 2021 Elsevier B.V., All rights reserved.

PY - 2021/1

Y1 - 2021/1

N2 - A search for dark matter particles is performed using events with a Z boson candidate and large missing transverse momentum. The analysis is based on proton–proton collision data at a center-of-mass energy of 13Te, collected by the CMS experiment at the LHC in 2016–2018, corresponding to an integrated luminosity of 137fb-1. The search uses the decay channels Z → e e and Z → μ μ. No significant excess of events is observed over the background expected from the standard model. Limits are set on dark matter particle production in the context of simplified models with vector, axial-vector, scalar, and pseudoscalar mediators, as well as on a two-Higgs-doublet model with an additional pseudoscalar mediator. In addition, limits are provided for spin-dependent and spin-independent scattering cross sections and are compared to those from direct-detection experiments. The results are also interpreted in the context of models of invisible Higgs boson decays, unparticles, and large extra dimensions.

AB - A search for dark matter particles is performed using events with a Z boson candidate and large missing transverse momentum. The analysis is based on proton–proton collision data at a center-of-mass energy of 13Te, collected by the CMS experiment at the LHC in 2016–2018, corresponding to an integrated luminosity of 137fb-1. The search uses the decay channels Z → e e and Z → μ μ. No significant excess of events is observed over the background expected from the standard model. Limits are set on dark matter particle production in the context of simplified models with vector, axial-vector, scalar, and pseudoscalar mediators, as well as on a two-Higgs-doublet model with an additional pseudoscalar mediator. In addition, limits are provided for spin-dependent and spin-independent scattering cross sections and are compared to those from direct-detection experiments. The results are also interpreted in the context of models of invisible Higgs boson decays, unparticles, and large extra dimensions.

UR - http://www.scopus.com/inward/record.url?scp=85099373612&partnerID=8YFLogxK

U2 - 10.1140/epjc/s10052-020-08739-5

DO - 10.1140/epjc/s10052-020-08739-5

M3 - Article

C2 - 33493254

AN - SCOPUS:85099373612

VL - 81

SP - 13

JO - European Physical Journal C

JF - European Physical Journal C

SN - 1434-6044

IS - 1

M1 - 13

ER -

ID: 27646854