Research output: Contribution to journal › Article › peer-review
Search for a Light Higgs Boson in Single-Photon Decays of ϒ (1S) Using ϒ (2S) →π+π- ϒ (1S) Tagging Method. / The BELLE collaboration.
In: Physical Review Letters, Vol. 128, No. 8, 081804, 25.02.2022.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - Search for a Light Higgs Boson in Single-Photon Decays of ϒ (1S) Using ϒ (2S) →π+π- ϒ (1S) Tagging Method
AU - The BELLE collaboration
AU - Jia, S.
AU - Shen, C. P.
AU - Adachi, I.
AU - Aihara, H.
AU - Al Said, S.
AU - Asner, D. M.
AU - Atmacan, H.
AU - Aushev, T.
AU - Ayad, R.
AU - Babu, V.
AU - Behera, P.
AU - Belous, K.
AU - Bennett, J.
AU - Bessner, M.
AU - Bhardwaj, V.
AU - Bhuyan, B.
AU - Bilka, T.
AU - Bobrov, A.
AU - Bodrov, D.
AU - Bonvicini, G.
AU - Borah, J.
AU - Bračko, M.
AU - Branchini, P.
AU - Browder, T. E.
AU - Budano, A.
AU - Campajola, M.
AU - Červenkov, D.
AU - Chang, M. C.
AU - Chang, P.
AU - Chekelian, V.
AU - Chen, A.
AU - Cheon, B. G.
AU - Chilikin, K.
AU - Cho, H. E.
AU - Cho, K.
AU - Cho, S. J.
AU - Choi, S. K.
AU - Choi, Y.
AU - Choudhury, S.
AU - Cinabro, D.
AU - Epifanov, D.
AU - Gabyshev, N.
AU - Gudkova, K.
AU - Korobov, A.
AU - Kovalenko, E.
AU - Krokovny, P.
AU - Matvienko, D.
AU - Shwartz, B.
AU - Vinokurova, A.
AU - Zhilich, V.
N1 - We thank the KEKB group for the excellent operation of the accelerator; the KEK cryogenics group for the efficient operation of the solenoid; and the KEK computer group, and the Pacific Northwest National Laboratory (PNNL) Environmental Molecular Sciences Laboratory (EMSL) computing group for strong computing support; and the National Institute of Informatics, and Science Information NETwork 5 (SINET5) for valuable network support. We acknowledge support from the Ministry of Education, Culture, Sports, Science, and Technology (MEXT) of Japan, the Japan Society for the Promotion of Science (JSPS) , and the Tau-Lepton Physics Research Center of Nagoya University; the Australian Research Council including Grants No. DP180102629, No. DP170102389, No. DP170102204, No. DP150103061, No. FT130100303; Austrian Federal Ministry of Education, Science and Research (FWF) and FWF Austrian Science Fund No. P similar to 31361-N36; the National Natural Science Foundation of China under Contracts No. 12005040, No. 11675166, No. 11705209; No. 11975076; No. 12135005; No. 12175041; No. 12161141008; Key Research Program of Frontier Sciences, Chinese Academy of Sciences (CAS) , Grant No. QYZDJ-SSW-SLH011; the Shanghai Science and Technology Committee (STCSM) under Grant No. 19ZR1403000; the Ministry of Education, Youth and Sports of the Czech Republic under Contract No. LTT17020; Horizon 2020 ERC Advanced Grant No. 884719 and ERC Starting Grant No. 947006 "InterLeptons" (European Union) ; the Carl Zeiss Foundation, the Deutsche Forschungsgemeinschaft, the Excellence Cluster Universe, and the VolkswagenStiftung; the Department of Atomic Energy (Project Identification No. RTI 4002) and the Department of Science and Technology of India; the Istituto Nazionale di Fisica Nucleare of Italy; National Research Foundation (NRF) of Korea Grants No. 2016R1\-D1A1B\-01010135, No. 2016R1\-D1A1B\-02012900, No. 2018R1\-A2B\-3003643, No. 2018R1\-A6A1A\-06024970, No. 2019K1 \-A3A7A\-09033840, No. 2019R1\-I1A3A\-01058933, No. 2021R1\-A6A1A\-03043957, No. 2021R1\-F1A\-1060423, No. 2021R1\-F1A\-1064008; Radiation Science Research Institute, Foreign Large-size Research Facility Application Supporting project, the Global Science Experimental Data Hub Center of the Korea Institute of Science and Technology Information and KREONET/GLORIAD; the Polish Ministry of Science and Higher Education and the National Science Center; the Ministry of Science and Higher Education of the Russian Federation, Agreement No. 14.W03.31.0026, and the HSE University Basic Research Program, Moscow; University of Tabuk research grants S-1440-0321, S-0256-1438, and S-0280-1439 (Saudi Arabia) ; the Slovenian Research Agency Grants No. J1-9124 and No. P1-0135; Ikerbasque, Basque Foundation for Science, Spain; the Swiss National Science Foundation; the Ministry of Education and the Ministry of Science and Technology of Taiwan; and the United States Department of Energy and the National Science Foundation.
PY - 2022/2/25
Y1 - 2022/2/25
N2 - We search for a light Higgs boson (A0) decaying into a τ+τ- or μ+μ- pair in the radiative decays of ϒ(1S). The production of ϒ(1S) mesons is tagged by ϒ(2S)→π+π-ϒ(1S) transitions, using 158×106 ϒ(2S) events accumulated with the Belle detector at the KEKB asymmetric energy electron-positron collider. No significant A0 signals in the mass range from the τ+τ- or μ+μ- threshold to 9.2 GeV/c2 are observed. We set the upper limits at 90% credibility level (C.L.) on the product branching fractions for ϒ(1S)→γA0 and A0→τ+τ- varying from 3.8×10-6 to 1.5×10-4. Our results represent an approximately twofold improvement on the current world best upper limits for the ϒ(1S)→γA0(→τ+τ-) production. For A0→μ+μ-, the upper limits on the product branching fractions for ϒ(1S)→γA0 and A0→μ+μ- are at the same level as the world average limits, and vary from 3.1×10-7 to 1.6×10-5. The upper limits at 90% credibility level on the Yukawa coupling fϒ(1S) and mixing angle sinθA0 are also given.
AB - We search for a light Higgs boson (A0) decaying into a τ+τ- or μ+μ- pair in the radiative decays of ϒ(1S). The production of ϒ(1S) mesons is tagged by ϒ(2S)→π+π-ϒ(1S) transitions, using 158×106 ϒ(2S) events accumulated with the Belle detector at the KEKB asymmetric energy electron-positron collider. No significant A0 signals in the mass range from the τ+τ- or μ+μ- threshold to 9.2 GeV/c2 are observed. We set the upper limits at 90% credibility level (C.L.) on the product branching fractions for ϒ(1S)→γA0 and A0→τ+τ- varying from 3.8×10-6 to 1.5×10-4. Our results represent an approximately twofold improvement on the current world best upper limits for the ϒ(1S)→γA0(→τ+τ-) production. For A0→μ+μ-, the upper limits on the product branching fractions for ϒ(1S)→γA0 and A0→μ+μ- are at the same level as the world average limits, and vary from 3.1×10-7 to 1.6×10-5. The upper limits at 90% credibility level on the Yukawa coupling fϒ(1S) and mixing angle sinθA0 are also given.
UR - http://www.scopus.com/inward/record.url?scp=85126389684&partnerID=8YFLogxK
U2 - 10.1103/PhysRevLett.128.081804
DO - 10.1103/PhysRevLett.128.081804
M3 - Article
C2 - 35275679
AN - SCOPUS:85126389684
VL - 128
JO - Physical Review Letters
JF - Physical Review Letters
SN - 0031-9007
IS - 8
M1 - 081804
ER -
ID: 35703861